Tonkin & Taylor

ENVIRONMENTAL AND ENGINEERING CONSULTANTS

REPORT 7535

Watercare Services Ltd

Huia Water Treatment Plant Rebuild Geotechnical Investigation and Assessment

Report prepared for:

Watercare Services Ltd

Report prepared by:

Tonkin & Taylor Ltd

Distribution:

Watercare Services Ltd

Tonkin & Taylor Ltd (FILE)

October 2010

T&T Ref:27064.001/Final

1 hard copy, 1 digital

1 copy

Auckland

105 Carlton Gore Road, Newmarket PO Box 5271, Wellesley Street Auckland 1141, New Zealand Ph: 64-9-355 6000

Fax: 64-9-307 0265 email: auck@tonkin.co.nz website: www.tonkin.co.nz

Table of contents

1	Intro	oduction		1
2	T&T	April - M	lay 2010 Site Investigation	2
	2.1	Genera	al	2
	2.2	Site Inv	vestigation Details	2
		2.2.1	Machine Drilled Boreholes	2
		2.2.2	Groundwater Monitoring	4
		2.2.3	Sampling and Laboratory Testing	4
		2.2.4	Walk Over Survey	5
		2.2.5	Hand Augured Boreholes	6
		2.2.6	Aerial Photo Interpretation	6
3	Gro	und Cond	litions	8
	3.1	Geotec	chnical Units	8
		3.1.1	Fill	8
		3.1.2	Colluvium	8
		3.1.3	Completely/Highly Weathered Cornwallis Formation	8
		3.1.4	Moderately Weathered Softened Cornwallis Formation	9
		3.1.5	Slightly Weathered Cornwallis Formation	9
	3.2	Geolog	gical structure	9
	3.3	Ground	dwater	9
	3.4	Interpr	eted Geological Model	10
4	Geo	technical	Design Considerations	11
	4.1	Slope S	Stability	11
		4.1.1	General	11
		4.1.2	Material Strength Parameters	11
		4.1.3	Design Criteria	12
		4.1.4	Results of Slope Modelling	12
	4.2	Founda	ations	13
		4.2.1	General	13
		4.2.2		13
		4.2.3	Piled Foundations	15
5	Con	clusions		16
6	Арр	licability		18
7	Refe	erences		19

Drawings

Appendix A: Watercare Site Layout Options

Appendix B: Borehole Logs and Photos

Appendix C: Piezometer and groundwater data

Appendix D: Laboratory Testing Results

Appendix E: SlopeW Stability Analyses

1 Introduction

Tonkin & Taylor Ltd (T&T) were engaged by Watercare Services Ltd (Watercare) to carry out a geotechnical investigation to support the proposed rebuild of the Huia Water Treatment Plant in Waima, West Auckland.

We understand that Watercare are planning a significant upgrade of the Huia Water Treatment Plant, with the majority of the infrastructure replacement to take place over the next five years (upgrade options presented in Appendix A). Given that this plant provides a significant percentage of the Auckland Regions water supply, the risk of ground deformation due to settlement or slope instability needs to be assessed.

T&T have previously presented a preliminary assessment of the expected ground conditions and geotechnical design considerations in a previous report titled *Huia Water Treatment Plant Rebuild* - *Preliminary Geotechnical Assessment* [Ref 2]. This assessment was based on an archive search by Tower Foundations Ltd [Ref 1], which collects all the pre-existing geotechnical investigation data since it's the sites construction beginning in the 1920's. Our preliminary assessment highlighted the need for further investigation to better understand potential for ground movements and to detail the groundwater model.

Our present scope of work, as outlined in our proposal dated 26 March 2010, addresses these needs and includes:

- Ground investigation comprising
 - Engineering geological mapping focussing on geomorphic evidence of slope instability of the site and near surrounds.
 - 4 machine drilled boreholes to a maximum depth of 25 m positioned within the perimeter of the existing plant.
 - 3-4 machine drilled boreholes to a maximum depth of 25 m located in the bushland north of Woodlands Park Road.
 - One day of CPT probing with pore pressure dissipation testing.
 - Standpipe piezometer installation in each borehole.
 - Installation of 3-4 groundwater pressure transducers (divers) to automate daily ground water monitoring.
 - Sampling for laboratory testing.
- Laboratory testing comprising
 - 6 soil triaxial tests for strength data on colluvium and weathered Cornwallis
 Formation
 - 6 consolidation tests to assess settlement parameters for design
- Update the existing geological model
- Assess the geotechnical material strengths and parameters for design
- Re-assess slope stability utilising update models and design parameters
- Provide options for suitable foundations systems and foundation design parameters
- Provide a geotechnical report addressing all of the above

2 T&T April - May 2010 Site Investigation

2.1 General

The Huia Water Treatment Plant has been subject to a range of different sub-surface site investigation with the oldest available data stretching back to the mid 1980's.

Tower Foundations Ltd collected all available site investigation historical data and presented them in their report titled *Huia Water Treatment Plant – Review of Historical Geotechnical Information* [Ref 1].

T&T reviewed this information in our previous preliminary report [Ref 2] and highlighted the need for further site investigation in order to address uncertainties regarding the local groundwater regime, potential for the presence of a continuous low angle shear surface and consolidation settlements.

2.2 Site Investigation Details

On 14 April 2010 T&T began the site investigation works at the Huia Water Treatment Plant and completed it on 7 May 2010.

The site investigation consisted of

- 8 machine drilled boreholes with core sampling and push tubes for laboratory testing
- Installation of standpipe piezometers and borehole groundwater pressure transducers
 (Divers) which automate recording of groundwater pressures
- Laboratory testing (completed on 31 May 2010)
- 4 hand augured boreholes with hand Shear Vane testing along the south-western bank of the lagoons. The Client requested these boreholes outside the scope of the this report
- Walk over survey to map exposed geology
- Aerial photo interpretation of historical aerial photos

CPT testing was not carried out because we perceived that the risk of damaging underground services was too high and access was limited.

2.2.1 Machine Drilled Boreholes

Five boreholes were drilled within the treatment plant and three in the bush area north of Woodlands Park Road. The following Table 1 provides details of the boreholes and their locations are shown in Drawing 27064.001-01. Borehole logs and core photos are attached in Appendix B.

Table 1 - Summary of machine drilled boreholes

Borehole	Location	Final Depth	Installation	Sampling		
BH 1	Garden shed	24.75 m	Nested piezometers	2 push tubes		
BH 2	Sludge thickener tank	21.00 m	Nested piezometers	1 push tube		
BH 3	Washwater thickener	24.85 m	Nested piezometers	No sampling ¹		
BH 4	Lagoon	24.00 m	Single piezometer	3 push tubes 1 core sample		
BH 4A	In front of BH 4 opposite service road	0.9 m	Hole abandoned becauservices were encount			
BH 5	Water tank	18.85 m	Nested piezometers	1 push tube		
вн 6	Spillway	22.50 m	Nested piezometers	4 push tubes 1 push tube for fill 2 core samples for fill 3 core samples		
BH 7	Bush – side of creek	15.00 m	Nested piezometers	No sampling ²		
BH 8	North of raw water aqueduct	22.50 m	Nested piezometers	1 push tube		

¹ Frequent and sharp variation in ground strength prevented obtaining suitable samples

Fill was found in the southern area of the site, overlying Colluvium deposits. The Cornwallis Formation is present underneath the Colluvium or at surface towards the east, ranging from completely weathered to moderately/slightly weathered at depth. Coarse sandstone interbedded with conglomerate layers was found across the whole site. Table 2 below summarises the geological units encountered during drilling and these are described further in Section 3.

Table 2 - Summary of geological units encountered during 2010 T&T drilling campaign

Unit	Depth of top-bottom of Geological Units (m b.g.l.)													
	BH 1	BH 2	BH 3	BH 4-4A	BH 5	вн 6	BH 7	BH 8						
Fill	0.0-4.5			0.0-1.0	0.0-1.5	0.0-2.0								
Colluvium	4.5-8.0	0.0-3.8		1.0-5.0	1.5-4.5	2.0-3.8	0.0-3.0	0.0-6.6						
CW-HW Cornwallis	8.0-14.3	3.8-18.0	0.0-1.0	5.0-16.0		3.8-12.0		6.6-18.5						
MW (softened) Cornwallis	14.3-20.5	18.0-EoB	1.0-19.0	16.0-18.0	4.5-15.8	12.0-EoB	3.0-10.0	18.5-20.5						
MW-SW Cornwallis	20.5-EoB		19.0-EoB	18.0-EoB	15.8-EoB		10.0-EoB	20.5-EoB						

² Unexpected limited thickness of Colluvium and absence of CW-HW Cornwallis Formation prevented obtaining suitable samples

We note that apparent asbestos containing material was identified in the fill in BH 4A. The presence of this hazardous substance should be taken into account when planning and undertaking earthworks in that area and the extent of this material may need to be confirmed by a geo-environmental investigation if this area is to be disturbed during the re-build.

2.2.2 Groundwater Monitoring

Standpipe piezometers were installed in each machine drilled borehole. Three divers were also installed for continuous hourly recording of groundwater levels and these are scheduled to remain in place for 12 Months to give an indication of the seasonal variation in groundwater levels. Summary of piezometers installations are presented in Appendix C.

Groundwater levels were measured during drilling and are reported in the borehole logs. Table 4 below summarises the groundwater levels measured with a dipmeter on 02 June 2010. On the same day data from 3 divers were downloaded and the data are presented in Appendix C.

It should be noted that during drilling a thick (1.5m-2m) bed of jointed conglomerate was encountered in boreholes BH5, BH7 and BH8. When encountered at depth (typically below 11m) the drillers immediately reported 100% loss of their drilling fluid, which, when the drilling rig was idling, could be observed rapidly dropping down the borehole.

Table 3 - Summary of groundwater readings

Borehole	Piezometer	Material	Groundwater depth from ground level	Approx Groundwater Elevation (m RL)	Pressure head (m above piezo tip)
BH 1	Piezometer 1	CW-HW Cornwallis MW-SW Cornwallis	7.56 m 8.64 m	101.64 m 100.56 m	3.44m 16.36m
BH 2	Piezometer 1 Piezometer 2	CW-HW Cornwallis MW-SW Cornwallis	5.85 m 11.10 m	109.15 m 103.90 m	3.65m 9.9m
BH 3	Piezometer 1 Piezometer 2	Softened Cornwallis MW-SW Cornwallis	4.37 m 5.12 m	104.91 m 104.16 m	3.63m 19.73m
BH 4	Piezometer 1	CW-HW Cornwallis	4.30 m	104.04 m	6.7m
BH 5	Piezometer 1 Piezometer 2	CW-HW Cornwallis MW-SW Cornwallis	6.60 m 11.10 m	114.40 m 109.90 m	1.4m 7.75m
вн 6	Piezometer 1 Piezometer 2	CW-HW Cornwallis Softened Cornwallis	8.28 m 9.12 m	98.47 m 97.63 m	4.72m 13.32m
BH 7	Piezometer 1 Piezometer 2	Softened Cornwallis MW-SW Cornwallis	9.55 m 9.55 m	110.95 m 110.95 m	0.95m 5.45m
BH 8	Piezometer 1 Piezometer 2	Colluvium Softened Cornwallis	Dry 15.10 m	Dry 108.90 m	0.0m 5.4m

2.2.3 Sampling and Laboratory Testing

Undisturbed push tube samples and partly undisturbed core samples from triple tube barrel were collected during drilling. A total of 19 samples (13 push tubes and 6 core samples) were collected. The following Table 4 summarised the sample campaign and laboratory testing scheduling.

Table 4 - Summary of sampling and laboratory testing

Borehole	Sample	Depth	Туре	Material	Test scheduled
BH 1	PT 1	6.0-6.5 m	Push tube	CW-HW Cornwallis Frm	Triaxial CUP
BH 1	PT 2	9.0-9.5 m	Push tube	CW-HW Cornwallis Frm	Triaxial CUP
BH 2	PT 1	3.0-3.5 m	Push tube	Colluvium	Consolidation
BH 4	PT 1	2.0-3.0 m	Push tube	Colluvium	Triaxial CUP
BH 4	PT 2	4.5-5.0 m	Push tube	Colluvium	Consolidation
BH 4	DS 1	6.85-7.10 m	Core sample	CW-HW Cornwallis Frm	Not scheduled ⁽¹⁾
BH 4	PT 3	7.5-8.0 m	Push tube	CW-HW Cornwallis Frm	Consolidation
BH 5	PT 1	2.5-3.0 m	Push tube	Colluvium	Consolidation
BH 6	S 1	0.75-0.85 m	Core sample	Fill	Not scheduled ⁽²⁾
BH 6	PT 1	0.85-1.35 m	Push tube	Fill	Not scheduled ⁽²⁾
BH 6	S 2	1.60-1.70 m	Core sample	Fill	Not scheduled ⁽²⁾
BH 6	PT 2	2.25-2.75 m	Push tube	Colluvium	Consolidation
вн 6	PT 3	3.0-3.5 m	Push tube	Colluvium	Triaxial CUP
BH 6	PT 4	4.5-5.0 m	Push tube	CW-HW Cornwallis Frm	Triaxial CUP
BH 6	SS 1	5.40-5.55 m	Core sample	Shear surface	Not scheduled ⁽³⁾
вн 6	PT 5	6.5-7.0 m	Push tube	CW-HW Cornwallis Frm	Consolidation
вн 6	SS 2	3.95-3.05 m	Core sample	Shear surface	Triaxial CUP
вн 6	SS 3	8.40-8.55 m	Core sample	Shear surface	Triaxial CUP
BH 8	PT 1	2.0-2.3 m	Push tube	Colluvium	Triaxial CUP

^{1.} Sample unsuitable for testing

Multistage Consolidated Undrained Triaxial Compression Tests have been undertaken according to BS1377:1990-Part 8. One-dimensional consolidation tests were carried out according to NZS4402:1986. Laboratory test results are presented in Appendix D.

2.2.4 Walk Over Survey

On 6 May 2010 a T&T engineering geologist carried out a walk over survey at two locations in the area surrounding the treatment plant

- Along the creek at Armstrong Gully where the Cornwallis Formation outcrops.
- Along Exhibition Drive (an unsealed Watercare access road) to the north of Woodlands Park
 Road where the Nihotupu Formation outcrops.

The walk over survey focused on identifying and measuring the bedding and defects within the rock mass and evidence of slope instability.

^{2.} Requested by Watercare Ltd. for possible future testing beyond the scope of this report

^{3.} Sample damaged, unsuitable for testing

2.2.4.1 Rock Outcrop in Armstrong Gulley

Highly weathered Cornwallis Formation outcrops along the bed of creek. This comprises grey silty fine grained SANDSTONE extremely weak, bedded, weathering to orange brown.

The bedding is variable from $18^{\circ}/280^{\circ}$ (dip/dip direction) close to the road to $10^{\circ}/300^{\circ}$ towards the waterfall. This unit appears to be locally thinly bedded, with layer thickness varying from 20-50 mm to 300 mm.

Two sets of sub-vertical defects were identified dipping towards 200° and 120°. These appear to be stress relief defects and were observed to terminate on bedding partings.

2.2.4.2 Rock Outcrop on Exhibition Drive

Exposures of Nihotupu Formation are clearly visible along the up-slope cuttings. The Nihotupu Formation consists of reddish to dark brown, medium grained, very weak, volcaniclastic SANDSTONE.

The bedding appears to be relatively constant dipping at 10º/010º, which accounts for the overall performance of this material in the near vertical cut slopes on the North side of Exhibition Drive. The thickness of the layers is variable from a few centimetres to more than 1 m.

Two main sets of defects are present dipping approximately 88º/200º and 70º/270º, the former being highly persistent and controlling the localised toppling instability observed in places along the road cuttings.

2.2.5 Hand Augured Boreholes

In order to assess the shear strength of the fill at the south-western side of the lagoon, 4 hand-augured boreholes with hand held Shear Vanes were undertaken on 5 May 2010. The hand augured were push to either refusal or to a maximum depth of 2 m bgl, which is the typical thickness of the fill identified in BH 6. Shear Vane testing was carried as the auger holes were advanced at 0.5 m intervals.

The following Table 6 summarises the data of the hand augured boreholes and their location is shown in Drawing 27064-001.01.

Table 5 - Summary	of	hand	augured	boreholes
--------------------------	----	------	---------	-----------

Borehole	Depth	Hand Held Shear Vane Strength (kPa, peak/residual)								
		0.5 m bgl	1.0 m bgl	1.5 m bgl	2.0 m bgl					
HA 1	2.0 m	108/46	77/18	65/28	83/55					
HA 2	2.0 m	123/31	77/28	62/31	83/62					
HA 3*	1.0 m	UTP	UTP							
HA 4	2.0 m	UTP	114/40	123/65	95/28					

^{*} Ended at 0.4 m bgl on gravel layer. Further attempts aborted on same gravel layer

2.2.6 Aerial Photo Interpretation

As part of our assessment of geotechnical slope stability of the site an aerial photo interpretation was carried out on a pair of stereo photographs dated November 1961 at an average scale of 1:16,000.

From the aerial photo interpretation it appears that the treatment plant is located in the northern part of a wider depression defined by ridges and a large escarpment. Secondary ridges are present within the depression with a sub-parallel trend, defining the catchment into four main steeply incised gullies (one of these is Armstrong Gulley). These gullies are sub-parallel each other and show sharp changes of direction which we consider is likely to be indicative of structural control (faulting). The geomorphology of the area suggests that the depression is probably tectonic generated.

The aerial photographic interpretation indicates no evidence of deep seated or shallow instability in the area, beyond the escarpment that encompasses the entirety of the Waima catchment. This is discussed further in Section 3.4 below.

3 Ground Conditions

3.1 Geotechnical Units

Our previous geological model [Ref 2] has been updated to include a zone of softened (or moderately weathered) Cornwallis Formation sandstone as well as incorporating new strength testing data and revised unit thicknesses. In summary the site is underlain by the following geotechnical units.

3.1.1 Fill

Fill material was encountered in the south of the site (BH 1, BH 4, BH 5 and BH 6) and forms the bank of the lagoon with a thickness of up to 4.5 m to the west of the site and 2.0 m at the lagoon. It comprises reworked site-won materials, mainly yellow brown to grey brown clayey or sandy silts with some coarse sand. The base of the unit becomes organic rich and fibrous indicating stripping of the original ground surface prior to placement was of poor quality or not carried out at all.

From historical data, the fill is firm to stiff in strength with SPT testing ranging between 0 to 10 blows/300 mm and undrained shear strengths ranging from 29/15 kPa to 130/41 kPa (peak/residual) [Ref 1 & 2].

It is apparent from the testing data that some of the historical consolidated undrained triaxial tests have been conducted in fill material, while in some cases it is not apparent whether the test results are within fill or colluvial soils. For the purposes of the stability analyses that follow these two units have been modelled as one.

3.1.2 Colluvium

Apart from BH 3, all boreholes encountered a layer of colluvial deposits of thickness varying from 2.0 m to 6.6 m, with the maximum thickness encountered to the north and west of the site.

The colluvium comprises sandy silts and sands (fine to coarse) reworked from the underlying Cornwallis Formation to the south of Woodlands Park Road and possibly from the Nihotupu Formation at the north of Woodlands Park Road. The colluvium is typically light grey brown orange mottled with rare carbonaceous inclusions.

From historical data the SPT N values vary from 3 to 11 blows for 300 mm [Ref 1 & 2]. Analysis of Triaxial test results from this study and from historical data (P-Q plot in Appendix D) indicates Mohr-Coulomb parameters of c' = 2 kPa and $\phi' = 30^{\circ}$ for the colluvium material.

3.1.3 Completely/Highly Weathered Cornwallis Formation

This material is similar to the colluvium but with a more structured appearance with relict defects and bedding planes visible. This unit consists of fine to coarse sand and silt with fine to medium grained rounded gravel in discrete beds. Typically it is dark orange to brown. The thickness of this unit is variable across the site.

From historical data the SPT N values vary from 15 to 30 blows for 300 mm but values above 50 were recorded [Ref 1 & 2]. Triaxial test results from this study and from historical data (P-Q plot in Appendix D) indicate Mohr-Coulomb parameters of c' = 8kPa and $\varphi' = 28^{\circ}$ would be appropriate for the CH-HW Cornwallis Formation.

3.1.4 Moderately Weathered Softened Cornwallis Formation

All boreholes encountered this unit which has a thickness that varies from 2 m to 18 m with an average of 10 m. It consists of greenish grey and pink speckled fine to medium (locally coarse) grained silty sand and fine to medium sub-rounded gravel. It is characterised by alternating poorly cemented and well cemented beds.

From historical data the SPT N values vary from 25 to 45 blows for 300 mm [Ref 1 & 2]. Mohr Coulomb parameters for this material have been assessed at c' = 5 kPa and $\phi' = 35^{\circ}$ on the basis of the available SPT data and our field observations.

3.1.5 Slightly Weathered Cornwallis Formation

The rock mass comprises fine to medium grained sandstone with layers of medium grained conglomerate and thin laminations of siltstone. The colour is typically greenish grey with pink and white speckling. The rock is typically very weak to weak, with the conglomerate often closer to the upper end of this range.

The SPT N values typically exceed 50 blows/300 mm [Ref 1 & 2]. For the purposes of our stability modelling this unit has been modelled as bedrock.

3.2 Geological structure

Our walk over mapping showed that the general trend of the Cornwallis Formation is for bedding to dip at 5-10° towards the north-west (based on rock outcrops in Armstrong Gully and Exhibition Drive). The dip magnitude is also evident in borehole core where bedding is apparent in the weathered and unweathered rock mass (although dip direction can not be ascertained from vertical boreholes).

In the rock mass jointing is typically very steeply inclined to sub-vertical, with variable spacing, as confirmed from the outcrops in Armstrong Gully. The joint surfaces are typically clean within the unweathered material or with a silt/clay coating in the weathered material.

Some defects which exhibit evidence of shearing (polished and slickensided surfaces) were encountered at different locations within the borehole core. Some of the defects were bedding, being inclined at 5° to 15°, while other joints of 30° and 45° were also observed.

Brown, soft, plastic clay seams were identified in boreholes BH 6 and BH8 and in historical Beca boreholes BBH 4 and BBH 6. These seams were encountered within the colluvium and completely weathered Cornwallis Formation.

Some gravel-conglomerate layers were identified during drilling. By comparing depths of interception in borehole core and utilising structural contouring based on local bedding orientation it has been possible to correlate these conglomerate beds in the sub-surface profile. This correlation is not possible in the eastern part of the site adjacent to the sludge lagoons and the old gully alignment through this area. These conglomerate beds can be traced into the completely weathered Cornwallis Formation indicating little significant movement at depth has occurred at the site.

3.3 Groundwater

Casagrande type piezometers were installed during the 2010 site investigation and have been read manually. In three boreholes groundwater pressure transducers (divers) with data loggers have been lowered down the Casagrande piezometer to automatically monitor groundwater pressure Groundwater levels are shown in Table 3 above and plots from diver data are presented in Appendix C. The gravel/conglomerate layers present a high primary and secondary permeability

and are expected to underdrain parts of the site where they are found at moderate depths (10-15m).

The groundwater data from shallow piezometers indicates groundwater levels of around 110m RL in the upper slopes (North), reducing to around 98-100m RL on the lower slopes (South).

We note that the groundwater levels within the underlying SW Cornwallis Formation are only 1m to 1.5m lower than those recorded in the shallow piezometers. This translates to a significant groundwater pressure in these deeper piezometers (10-15m of pressure head) although this is predominantly the case only in those boreholes within the Treatment Plant compound.

For boreholes BH2, BH5, BH7 and BH8, significantly reduced piezometric heads are recorded in the deeper piezometers (5.5m to 10m head). This is broadly consistent with the location of a jointed conglomerate bed which occurs in all four boreholes and appears to provide some underdrainage in these areas.

For the purposes of the slope stability modelling we have taken the conservative case of a single piezometric surface coincident with the groundwater levels observed in the shallow boreholes and applied this to the entirety of the site.

3.4 Interpreted Geological Model

Our updated geological model for the site is illustrated in cross sections 27064.001-02 to 04. In summary the site is covered by an upper layer of colluvium, 3m to 7 m thick, overlain by up to 4.5 m of fill in places, being thickest in the southern part of the site.

The completely to highly (CW-HW) Cornwallis Formation underlies the colluvial deposits and is about 10 m thick. Its thickness appears to increase northwards.

Up to 18 m of softened moderately weathered (MW) Cornwallis Formation is found underneath the CW-HW layer. The average thickness is about 8-10 m. This unit is characterised by alternated poorly cemented sand and cemented sandstone.

The lowermost unit consists of moderately weathered to slightly weathered Cornwallis Formation sandstone.

The shear surfaces identified in borehole core have either been on jointing, which is intersecting core at 30-45° or along bedding which is known (from surface outcrop) to dip into the slope at 10-15°. These shear surfaces are apparent in some boreholes and not in others and can neither be traced along bedding with any continuity nor along the contact between the soil materials (colluvium and Cornwallis Formation) and the underlying rock mass.

Additionally, the conglomerate layers that can be correlated between boreholes (as discussed in Section 3.2 above) can also be traced into the highly weathered zone, and indicate significant continuity of lithology in the sub-surface (i.e. no historical slope instability extending into the Cornwallis Formation).

The escarpment that encircles the upper part of the Little Muddy Creek catchment has been identified historically as potentially being a head scarp of large scale catchment wide slope instability [refer Ref 2]. This has been challenged by recent work carried out in reference 3. We consider that the offset of the escarpment is not matched by the depth to Cornwallis Formation rock beneath the site, and we would not expect to find in-situ, Cornwallis Formation Sandstone that has not been deformed in Armstrong Gully. Alternative interpretations for this feature may include fault control, or a large scale erosional feature also been proposed [Ref 3], but we consider that it is not indicative of large scale, catchment wide slope instability.

4 Geotechnical Design Considerations

4.1 Slope Stability

Recommendations and opinions contained in this report are based on data from borehole and geological mapping from our 2010 site investigation, and on historical data collected by others. The nature and continuity of subsoil away from the investigations locations are inferred but it must be appreciated that actual conditions could vary from the assumed model.

4.1.1 General

Over the past 40 years the site has been significantly modified with considerable earthworksand re-levelling of the original topography. Any geomorphic evidence of historical slope instability is expected to have been removed. A discussion of the wider geomorphic regional setting is summarised above and has discounted a catchment wide landslide [Ref 3]. Continuity in bedding and intact rock observed in outcrop near the site support this.

We note that BBH2 drilled by Beca in 2005 was instrumented with an inclinometer to a depth of 39 m to monitor potential deep seated ground movements. Monitoring data are not available for this inclinometer beyond the baseline data reading made soon after installation. Arrangements have been made for further monitoring of this inclinometer, but this data is not presently available.

For design purposes, Watercare has categorised the treatment plant as an importance level 4 structure in accordance with AS/NZS 1170:0 2002. This indicates a seismic event with 1:2,500 annual probability of exceedence. For design, in accordance with AS/NZS 1170:5 2004 a peak ground acceleration of 0.31 g have been calculated and adopted for slope stability design.

4.1.2 Material Strength Parameters

Preliminary material strength parameters provided in our previous report dated January 2010 have been revised in the light of T&T laboratory testing. The material parameters for the geotechnical units described in Section 3.3 are outlined in the following Table 7.

Table 6 -	Material	strength	parameters
rable 0 -	Widteliai	3u cheur	parameters

Geotechnical Unit	Bulk Density (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle
Colluvium/Fill ⁽¹⁾	16.0	2	30
CW-HW Cornwallis Formation ⁽¹⁾	17.5	8	28
Shear Surface (1)(4)	17.5	0	16
MW Softened Cornwallis Formation ⁽²⁾	18.0	5	35
SW Cornwallis Formation ⁽³⁾	20.0	30	38

- 1. From T&T 2010 Triaxial tests
- 2. From historical SPT tests
- 3. Modelled as impenetrable bedrock
- 4. Not continuous across the site and not included in the SlopeW models

4.1.3 Design Criteria

The following table summarises the design criteria adopted for the site. The criteria were developed from various legislation, codes and guidelines that govern how development on land is to be undertaken.

Crawford and Millar [Ref 4] make reference to an FOS of 1.5 for design conditions and 1.2 for more extreme conditions and these have generally been adopted by Territorial Authorities in New Zealand. However, we note that the recommendations for a FOS of 1.2 under seismic load is considered overly onerous and not generally accepted practice where level of slope movement is generally more relevant than FOS.

Table 7 - Recommended Design Criteria: Slope Stability

Elevated Groundwater Conditions	Seismic Stability
Groundwater conditions associated with low probability high intensity rainfall event	0.65 PGA (1:2,500 AEP)
FOS > 1.2	FOS > 1.0#
	Groundwater conditions associated with low probability high intensity rainfall event

The seismic criteria recommended here are based on a very low risk of large scale slope movement following an earthquake. Current practice using semi-empirical methods to estimate ground movements indicate limited or insignificant movements provided the FoS under the selected psuedo-static loading is not less than 1.0 with a seismic load of 0.65 of the design PGA. These criteria should not be applied to slopes that may become mobile due to position at cliff tops or ground at risk to liquefaction. Our assessment of the slopes at the Huia Water treatment plant is that the seismic response is most likely to result in insignificant or limited displacement.

4.1.4 Results of Slope Modelling

Modelling has been undertaken using limit equilibrium methods by means of Geostudio SlopeW 2007 software. Analyses have been carried out according to the geological model described in Section 3 and shown in Drawing 27064.001-02 to 04. Geotechnical parameters have been applied as per Table 6 above.

No continuous shear surface has been introduced in the model as the results of this ground investigation have disproven this analysis case.

We focused our analyses along the eastern slopes (see Drawing 27064.001-04) as they are the steepest and thus are considered to best represent the worst case geometry with respect to slope instability (if occurring). Result outputs from SlopeW are presented in Appendix E.

We have considered three possible analysis cases:

- Case A: Current slope conditions in static and seismic conditions.
- Case B: Current slope conditions varying the groundwater levels (sensitivity analysis) in static conditions.
- Case C: Development Option 1 in static and seismic conditions.

Proposed development Option 2 has not been analysed at this stage. In order to build the flocculation tanks the small hill just north of Woodlands Park Road would need to be excavated to RL 125.5 m. This would require the excavation of about 6 m of ground to be replaced by a concrete structure filled with a maximum of 3 m of water. This is expected to result in a significant

unloading of the slope with a consequent improvement in slope stability expected. However, if Development Option 2 should be preferred, detailed analyses would be required.

Our analyses indicate that generally acceptable levels of stability are expected for the slope in static conditions (FoS > 2). For seismic conditions a minimum factor of safety (FoS) of 1.05 was calculated within the site and 0.97 in the slope below the site (beyond the property boundary). In all seismic assessments FoS values for slip circles that intersect the Huia WTP property boundary were >1.0.

Sensitivity analysis on groundwater levels (Case B) shows acceptable level of stability even in high groundwater conditions. We did not undertake sensitivity analysis on groundwater levels for Development Option 1 because the slope geometry modifications and applied loading have proven to be beneficial for stability when comparing Case A and Case C.

We note that the analysed slip circles are typically localised in nature and confined to steeper portions of the overall slope or within historical fill materials. Given the extent of excavations that may be required for individual structures for either development plan, consideration should be given to assessing temporary excavation stability during the design process.

4.2 Foundations

4.2.1 General

The existing infrastructure has been built in stages from 1926 to 1970's. It is our understanding that the existing structures are on shallow spread foundations. These have performed adequately to date, although discussions with site staff suggest that there is hairline cracking of many of the concrete tanks, including the clarifiers and some ongoing leakage results.

According to records and settlement monitoring carried out at the clarifier [Ref 1], post construction in 1973 the maximum settlement recorded was 39 mm with a maximum differential settlement of 30 mm. These values are within typically accepted design tolerances, however, it is not known when settlement monitoring was initiated in relation to construction and it is possible that a significant magnitude of settlement may have been missed prior to monitoring starting. Additionally, much of the clarifier footprint has been developed within cut (0-1m at SE corner, up to 5-7m of cut in SW corner) and the net loads applied are likely to have been reduced considerably due to the weight of soil removed.

4.2.2 Shallow Foundations

On the basis of historical settlement monitoring and taking into account the general condition of existing structures we expect that structures of similar foundation pressures to those existing should perform adequately with respect to bearing capacity and settlements if constructed on shallow foundations.

For shallow foundations, Ultimate Bearing Capacity, Ultimate Limit State (ULS) and Working Load Design are summarised in the following Table 8 for Colluvium and CW-HW Cornwallis Formation.

Table 8 - Summary of bearing capacity for shallow foundations

Material	Geotechnical Ultimate Bearing Capacity	Ultimate Limit State	Working Load Design
Colluvium	350 kPa	175 kPa	115 kPa
CW-HW Cornwallis Formation	800 kPa	400 kPa	265 kPa

For the same geological units short term bearing capacities (during construction) have also been calculated. Assuming an average undrained shear strength of 100 kPa for both materials [Ref 1 & 2], the geotechnical ultimate short term bearing capacity is 500 kPa and the short term working bearing capacity is 170kPa.

For initial guidance, a preliminary estimate of expected settlements has been made for new structures considering that only the Colluvium deposits and the CW-HW Cornwallis Formation are compressible. The following assumptions have been made:

- 1 m cutting to prepare foundation and even out grade.
- 1 compressible soil unit of 10 m thickness (average thickness of compressible material for the area).
- 1 compressible soil unit of 16 m thickness (maximum thickness of compressible material for the site as identified in BH 1).
- 100 kPa maximum structure surcharge (chlorine contact tanks).
- Surcharge pressure calculated at centre of compressible layer.
- Average m_v =0.2 m²/MN (no significant difference in m_v for Colluvium and CW Cornwallis formation)

On the basis of these assumptions, the maximum expected settlements are of 100 mm for a 10 m thick compressible unit and 110 mm for a 16 m thick compressible unit. We note that the formula used to estimate the settlements are conservative when compared with actual measured settlements and in many cases only 75% of the predicted settlements actually occurs.

We stress that the settlement figures quoted above are for initial guidance only. If shallow foundation options are favoured, then detailed analyses should be undertaken for each structure at detailed design stage.

It is important to note that pre-consolidation of the soils is expected beneath the footprint of existing structures and this may result in reduced settlements magnitude for those parts of new structures that overlap these areas. However, higher differential settlements would then be expected for new structures built across both the footprint of pre-existing structures and ground that has not been previously loaded. This potential for significant differential settlements will need to be addressed in detailed design, but should be considered in site layout and preliminary design.

We expect that the differential and total settlements may be able to be mitigated using either pre-load or ground improvement techniques for moderately sensitive structures.

We note further that in many cases a flat foundation platform for new structures will need to be developed either by earthworks cut or earthworks fill. In either case the changes in slope geometry need to be taken into account when calculating net loading.

4.2.3 Piled Foundations

Pile foundations allow transferring the load of the structures to stronger and deeper material. This type of foundation may be appropriate if:

- High foundation pressures are expected.
- Structures are to be constructed above very soft soils (parts of the old backfilled sludge lagoons?).
- Differential settlements may compromise the new structures.

For single driven piles founded on top of the Softened MW Cornwallis Formation with minimum embedment of 3 times the pile diameter a geotechnical ultimate end-bearing capacity of 2 MPa can be assumed. Ultimate Limit State Design and Working Load Design end bearing capacities are 1 MPa and 670 kPa respectively. A skin friction of 20 kPa can also be assumed.

5 Conclusions

Tonkin & Taylor was engaged by Watercare Services Ltd to carry out a site investigation and assessment of the geotechnical conditions at the Huia Water Treatment Plant. The plant is due for a significant upgrade in the next 2 to 5 years.

We have carried out a site investigation consisting of 8 machine drilled boreholes with sampling, laboratory testing and groundwater monitoring. We have interpreted and assessed the results of this site investigation campaign and re-assessed all available historical information [Ref 1 & 2]. Our conclusions are as follows:

- The geological model shown in Drawings 27064-02 to 04 has been developed on the basis of all current and historical data. The revised model comprises 4 to 5m of fill mainly in the south part of the site overlying Colluvial deposits up to 7.0 m thick. This in turn overlies up to 12 m of CW-HW Cornwallis Formation. Softened MW Cornwallis Formation is present beneath the CW-HW Cornwallis Formation to a maximum depth of 20.5 m, overlying the SW Cornwallis Formation.
- Continuity of conglomerate beds between boreholes indicates that and historical slope instability is expected to be confined to the uppermost Colluvium unit.
- Some slickensided clay seams and polished surfaces were encountered within the Colluvium and CW-HW Cornwallis Formation. However, these are not traceable between boreholes either at the soil/rock contact or along bedding planes. We have concluded that they do not define a continuous shear surface beneath the site.
- The groundwater data from shallow piezometers indicates groundwater levels of around 110m RL in the upper slopes (North), reducing to around 98-100m RL on the lower slopes (South). Across the Treatment Plant site the water levels recorded within the SW Cornwallis Formation at depth are on average only 1-1.5 m lower than those recorded in the Colluvium. Noticeably, groundwater levels in the SW Cornwallis to the North of Woodlands Park Road are underdrained by a jointed conglomerate bed and considerably reduced groundwater levels are recorded in these areas. For the purpose of design we have considered a (conservative) single piezometric surface coincident with the shallow piezometers water levels.
- Slope stability analyses undertaken on the basis of the defined ground and groundwater model have returned acceptable levels of stability for static (FoS > 1.5), elevated groundwater (FoS > 1.2) and a 1:2,500 AEP seismic event (FoS > 1.0).
- Slope stability analyses were undertaken to identify possible reductions in stability for the
 proposed development options. For the purposes of this reporting Development Option 1
 was analysed and found to improve the factor of safety for the analysed section.
 Development Option 2 has not been analysed to date, but the geometry of the proposed
 earthworks suggests that it should be beneficial or at least neutral with respect to impacts
 on the existing level of slope stability.
- Shallow foundations are considered suitable for the site.
 - Settlements of 75-100mm may need to be designed for depending on the extent of slope cut required to develop a foundation platform. Differential settlements need to be considered based on extent of proposed cut and extent of pre-consolidated ground associated with previously developed parts of the site.
 - Alternative options to address settlements may include pre-loading of those parts of the site that have not previously been subject to structure loadings. This may or may not be feasible within the construction staging whilst still maintaining operations.

- Depending on the depth of earthworks cut required to develop foundation platforms, the effect on net loading may be such that settlements can be minimised. However, where the building platform cut varies in depth, differential settlements should be expected.
- Driven Pile foundations are expected to be suitable for the site, end bearing in the MW
 Cornwallis Formation Sandstone present at approx 15m below ground surface to the west
 and south of the site (BH1, BH2, BH4, BH6, BH8) and as shallow as 5m in the north and west
 of the site (BH3, BH5 and BH7).

6 Applicability

This report has been prepared for the benefit of Watercare Services Ltd with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose without our prior review and agreement.

Part of the information used in this report has been collated by others and has been used in good faith. While every attempt has been made to verify the data, we cannot guarantee the accuracy of data supplied by other parties.

During excavation and construction the site should be examined by an engineer or engineering geologist competent to judge whether the exposed subsoils are compatible with the inferred conditions on which this report has been based. We would be pleased to provide this service to you and believe your project would benefit from such continuity. However, it is important that we be contacted if there is any variation in subsoil conditions from those described in the report.

Tonkin & Taylor Ltd

Environmental and Engineering Consultants

Report prepared by:

Authorised for Tonkin & Taylor by:

Cameron Lines

Senior Engineering Geologist

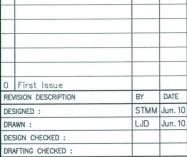
Chris Bauld

Project Director

With assistance from S. Mosconi


CJL

4-001stmm20101001FINAL.rpt.doc


7 References

- i. Tower Foundations Ltd, *Huia Water Treatment Plant Review of Historical Geotechnical Information*, Ref JN004/08 Report 5330 and 5331, October 2008
- ii. Tonkin & Taylor, Huia Water Treatment Plant Rebuild Preliminary Geotechnical Assessment, Ref 27064, January 2010
- iii. Tower Foundations Ltd *Titirangi No. 3 Reservoir Geotechnical Report,* Ref JN005/08 Report 5336, October 2008.
- iv. Crawford, S. A., and Millar, P.J., 1999; *The design of permanent slopes for residential development*, Proceedings 8th Australia New Zealand Conference on Geomechanics, Hobart.

Drawings

- All dimensions are in metres unless
- All dimensions are in metres unless noted otherwise. Existing contours from WSL survey. Drawings E3X144 dated 10. 10.05, E3X122 dated 08.04.04, E3X123 dated 04.05.04, E3X130 date 15.06.04 and E3X132 dated 23.06.04. Basehole positions from GHD report
 - 23.06.04.
 Borehole positions from GHD report
 No. 2585 dated september 2002,
 BECA Fig 1 dated 17.11.05 and
 Tonkin & Taylor Ltd report dated
 October 2005.

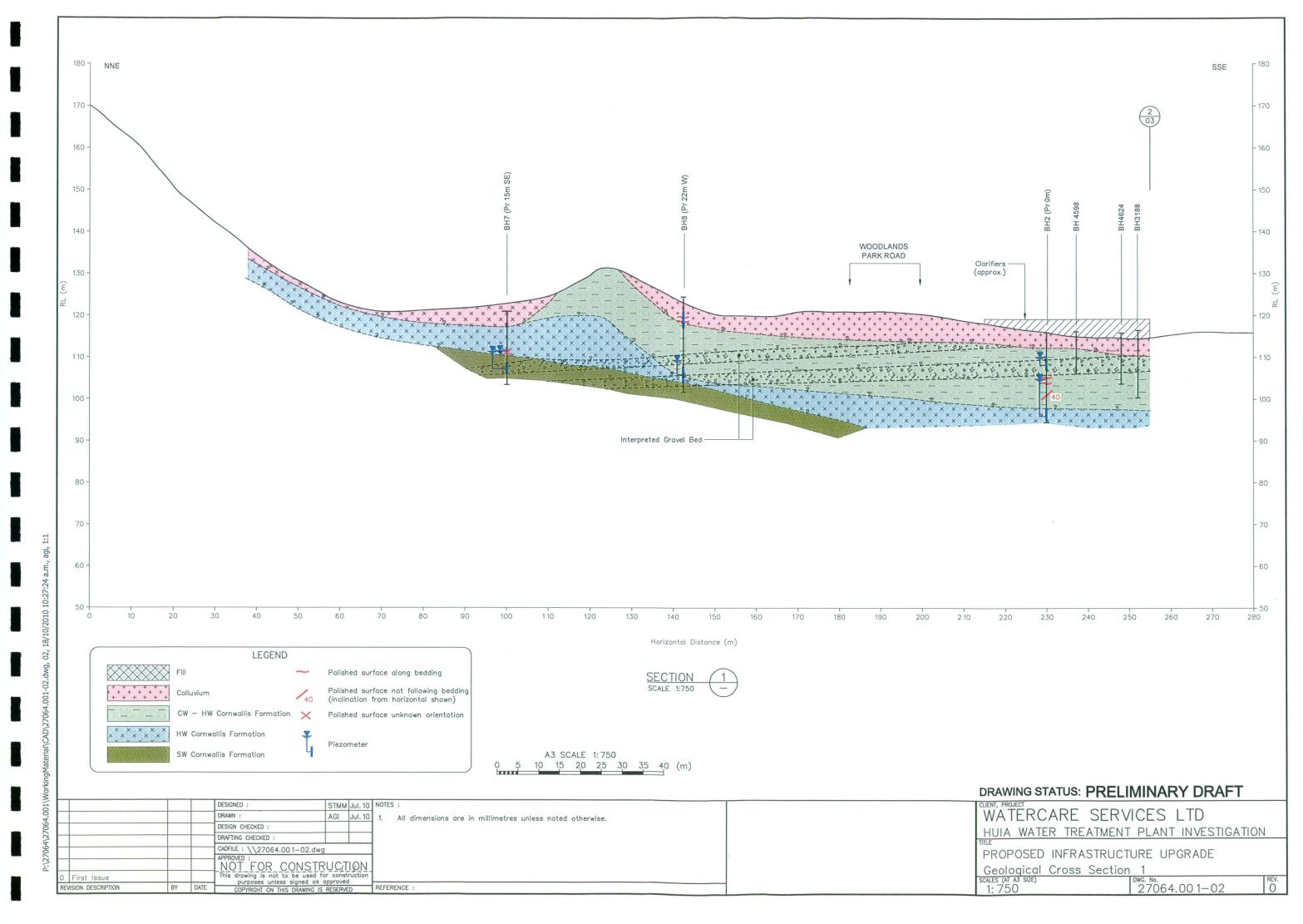
CADFILE: \\27064.001-01.dwg

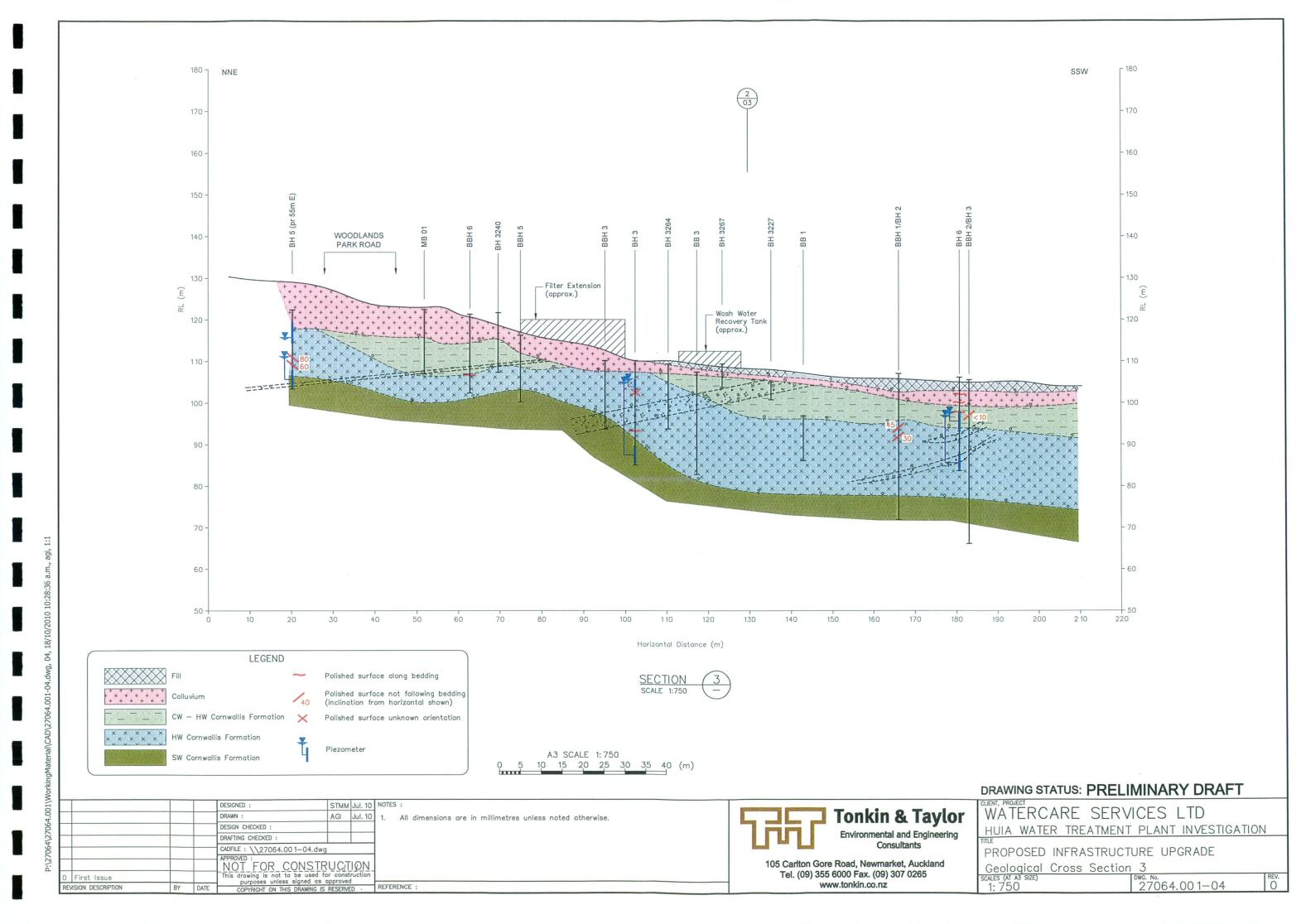
NOT FOR CONSTRUCTION

This drawing is not to be used for constru purposes unless signed as approved COPYRIGHT ON THIS DRAWING IS RESERVED

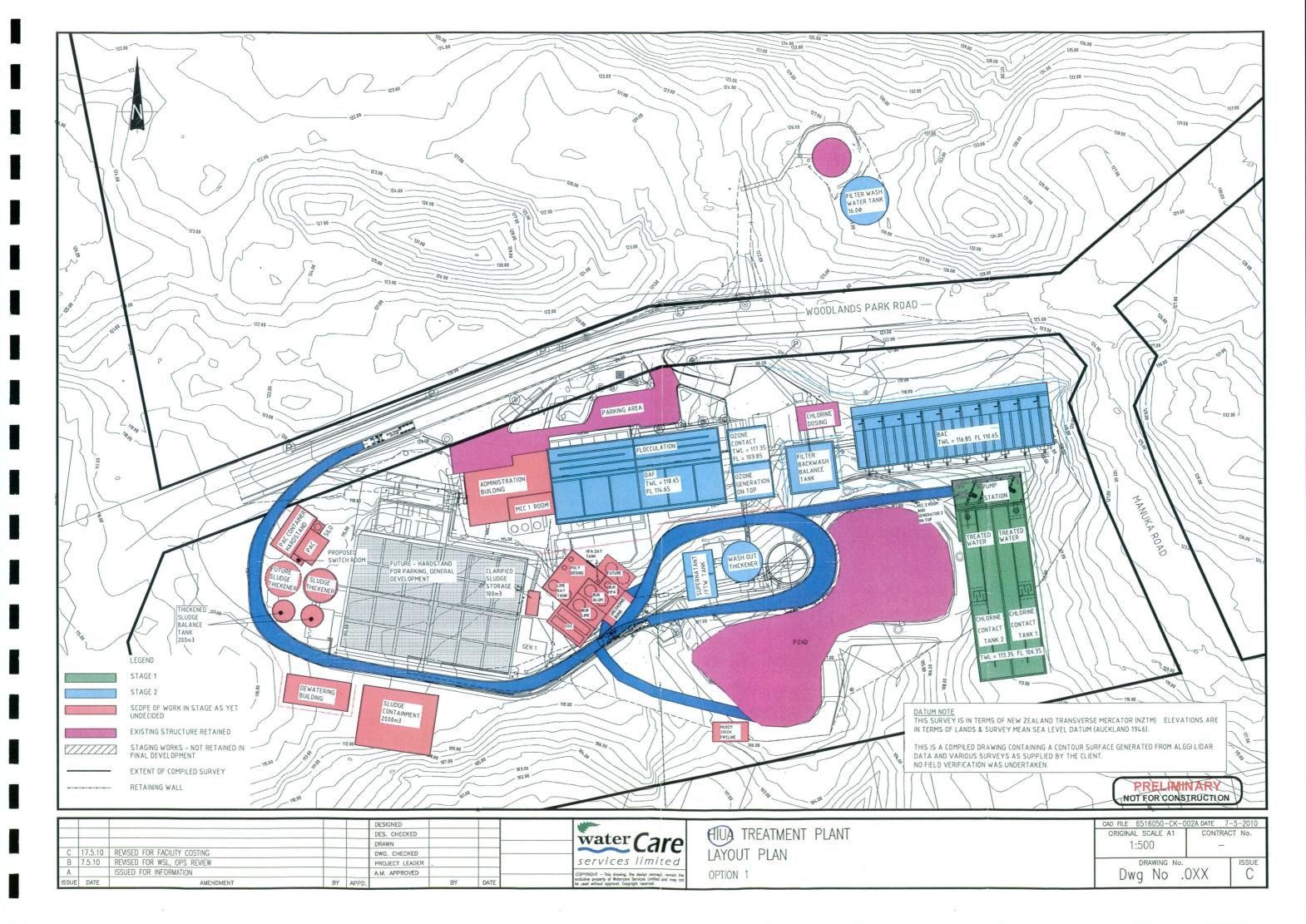
Tonkin & Taylor

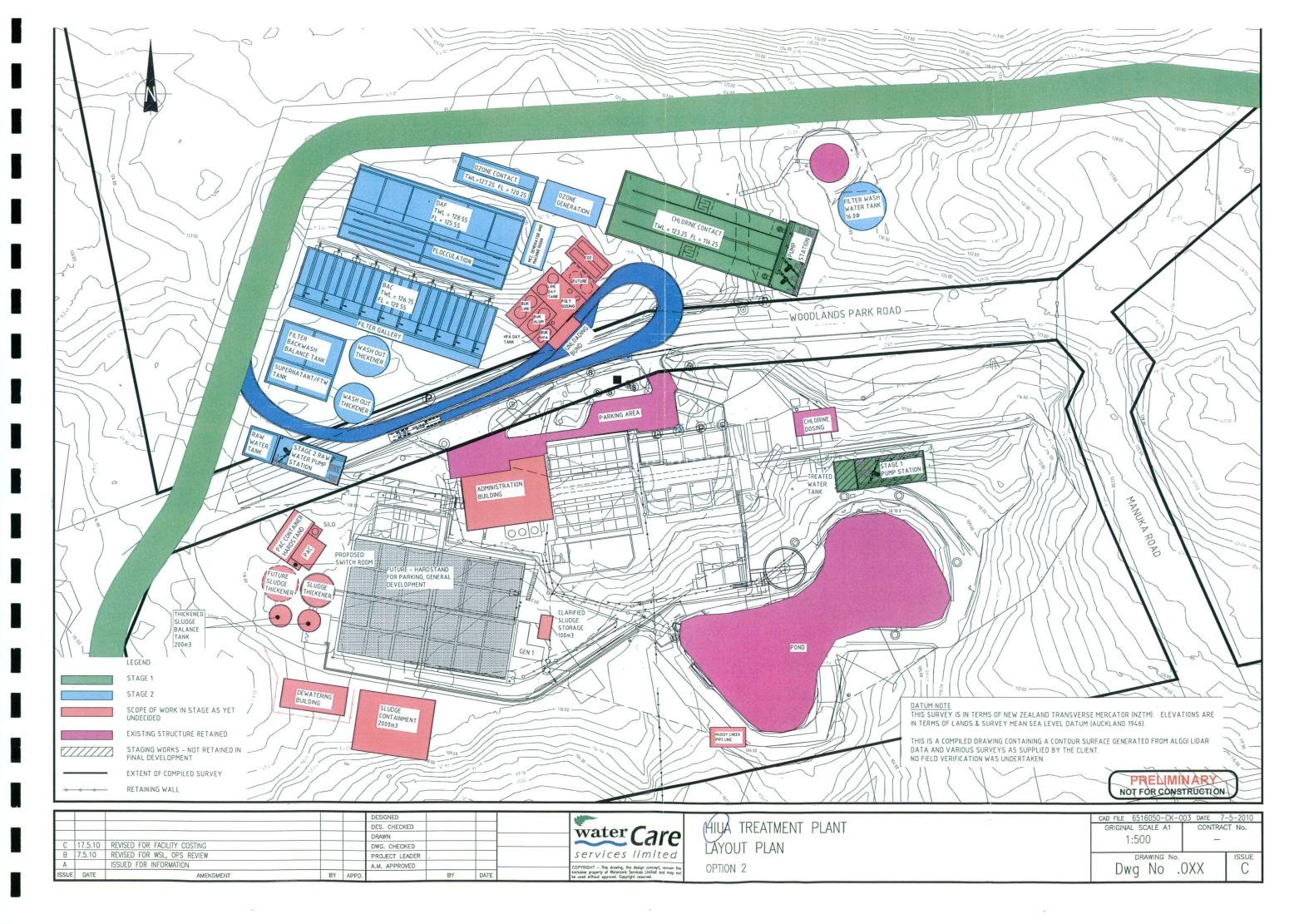
Environmental and Engineering Consultants 105 Carlton Gore Road, Newmarket, Auckland Tel. (09) 355 6000 Fax. (09) 307 0265 www.tonkin.co.nz

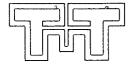

WATERCARE SERVICES LTD


HUIA WATER TREATMENT PLANT INVESTIGATION PROPOSED INFRASTRUCTURE **UPGRADE** T&T 2010 Site Investigation

Location Plan


SCALES (AT A3 SIZE)
AS SHOWN


27064.001-01

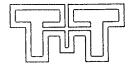

Appendix A: Watercare Site Layout Options

Appendix B:

Borehole Logs and Photos

Log Scale 1:25

TONKIN & TAYLOR LTD

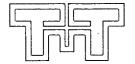

DRILL HOLE LOG

BOREHOLE No: BH1 Hole Location: Garden Shed

ROCKLG 27064.001.GPJ

SHEET 1 OF 5

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 CO-ORDINATES 6472355.72 mN DRILL TYPE: 303CR HOLE STARTED: 14/4/10 2656430.96 mE DATUM: Geodetic 49 HOLE FINISHED: 16/4/10 0.00° R.L. GROUND: 109.20 m DRILLED BY: Drill Force DIRECTION: R.L. COLLAR: m LOGGED BY: STMM CHECKED: CJL ANGLE FROM HORIZ.: -90.00° **DESCRIPTION OF CORE ROCK DEFECTS** ROCK OR SOIL TYPE, WEATHERING, SIGNIFICANT JOINTS, BEDDING, CRUSHED METHOD, CORE & CASIN DRILL WATER LOSS (%) CORE BOX RL (m) HARDNESS, STRENGTH, COLOUR, GRAPHIC LOG DATE / DEPTH TEST SYMBO CORE LOSS 8 AND SHEARED ZONES/SEAMS WATER LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICAL Bob foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS \$\$\$\$ \$22528 Clayey SILT, dark brown, soft, wet, low plasticity, organic fragments Very coarse GRAVEL, hard siltstone and scoria in clay matrix Silty CLAY, light grey, mottled dark grey and orange Fe stain, firm to stiff, moist, plastic. Some organic inclusions and angular siltstone gravel, reworked appearance, structureless Silty SAND, orange/red, very dense, dry to moist, some organic fragments. Some grey and dark grey, sub-rounded inclusions 0.9m: becoming very coarse, at limit of fine/medium gravel, dark grey gravel of various nature, sub-rounded, loose, moist 1.15m: becoming sandy CLAY, slightly gravelly, dark grey, mottles black and orange Fe stain, organic fragments, soft, moist to wet, high plasticity Organic CLAY, grey, numerous randomly spaced fragments of branches and vegetation, very soft, wet, high plasticity H 3.0m: organic content decreases CLAY, dark grey with some organic fibres, very soft, wet, high plasticity PUSH TUBE: Sampling failed, organic fibres preventing sample entering the tube Silty SAND, reddish brown, some grey mottles, loose, moist to dry, some organic fragments. Intermix with grey clay and vegetation remnants at top 50mm PUSH TUBE: Sampling failed. Recovered 50% of tube length, but core was vertically halved and not recovered. Material recovered as above

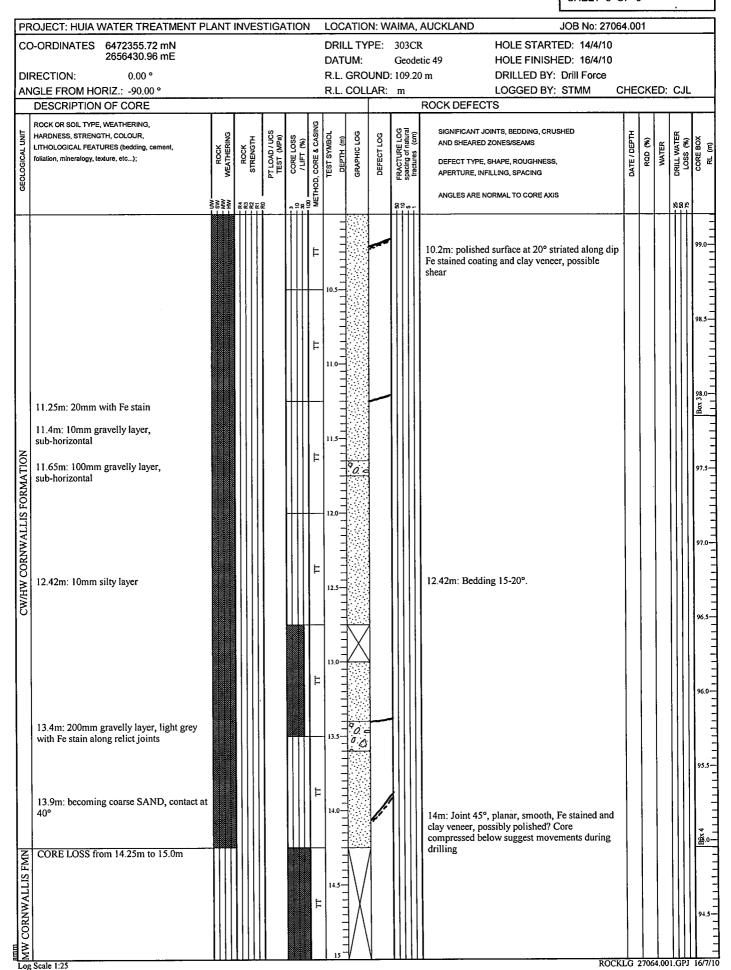

TONKIN & TAYLOR LTD

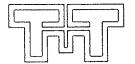
DRILL HOLE LOG

BOREHOLE No: BH1 Hole Location: Garden Shed

SHEET 2 OF 5

PR	OJECT: HUIA WATER TREATMENT PL	ANT	INVES	STIGA	TION	LOC	ATIO	N: W	AIMA,	AUCKLAND JOE	No: 27064	1.00	1		
CC	O-ORDINATES 6472355.72 mN 2656430.96 mE					DRII. DAT		PE:	303C	R HOLE STARTED: etic 49 HOLE FINISHED:					
DIF	RECTION: 0.00 °							UND:	: 109.2						
	IGLE FROM HORIZ.: -90.00 °					R.L.	COL	AR:	m	LOGGED BY: ST	им с	HEC	KE	D: CJI	
<u> </u>	DESCRIPTION OF CORE	1		1		1				ROCK DEFECTS		1	Т		┰┸┦
틸	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR,	2	Ę	ucs a)	SS (9	일 일 8	ဗို	90	LOG	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS		툂	<u>@</u>	" H	* ×
ICAL L	LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK WEATHERING	ROCK	PT LOAD / UCS TEST (MPa)	RE LO	TEST SYMBOL	GRAPHIC LOG	DEFECT LOG	FRACTURE LOG spacing of natural fractures (cm)	DEFECT TYPE, SHAPE, ROUGHNESS,		ОАТЕ / ВЕРТН	RQD (%)	WATER	CORE BOX
GEOLOGICAL UNIT	•	8	ST	PTU	8 7 8		25.0	胃	FRAC spaci frac	APERTURE, INFILLING, SPACING		DA.		8-	10 1
35		┃ ፮፮፮፮	2522		-3 CORELOSS -30 / LIFT (%) METHOD CORE & CASING				85.2-	ANGLES ARE NORMAL TO CORE AXIS				ន្តន	
H	Likely core loss from 5.0 to 5.8m			Ť	9797	† -		-							
				ļ			1\ /								104.0
						=	{								
17					į		1 X								E
FILL				ì	-] =	{/\								
						=	∜ \	Į.							103.:
	Silty, fine to medium SAND, orange brown, organic at the base, very loose, wet	1	$\ \ \ $			-	××	}							
_	PUSH TUBE: Core not logged	 				PTI0-	××								
	1 22.1 1 222. 2010 100 105500					=	1\/								03.0
						: -] X								
						-] / \								
	Silty, fine to coarse SAND, light grey with	 			 		××								
	orange hue, soft, moist, loose, coarse sand is sub-rounded	$\Pi\Pi$				-	× ×								102.
COLLUVIUM	Fragment of Cornwallis Formation, reworked condition, recovered as fine to] :	000	١,							
J.	medium GRAVEL, orange brown, trace of relict joints visible					7.0-	ره ا	'\		11					
[S	Silty, fine to coarse SAND, light grey with					<u>-</u> -	××	1							
	orange hue, soft, moist, loose, coarse sand is sub-rounded					-	××	1	$\ \ \ $					111	102.0
						:	××								
					-	7.5	××					Ì			
							××								01.5
					1111	_	××								
	SAND, slightly silty, to GRAVEL, loose, wet. Orange colour, gravel is sub-angular.					= =	×	d 							=
1	Very loose almost muddy at contact with colluvium					0,0	× a	.4 .2							2
						_ :	×°°								ığ
]× °								
CW/HW CORNWALLIS FORMATION						8.5	×°	:							
ĬŘM.						=	×, °								100.5
IS FO						:	x°,	.]						16/4/10	
ALL						тэ	-\	4						16/	
ZWW.	PUSH TUBE: Core not logged						1	7							
lo Z						<u>k</u> :	ĮΥ							-	100
//HW						- :	∄/\								
5	Fine to medium SAND, fight grey, pink							3							
	hue, medium dense, moist 9.66m: relict joint Fe stained (polished?),					 		بسير	<u> </u>						99.5-
	20°				$\parallel \parallel \parallel$	-									
	9.8m: some carbonaceous layers at 10° and becoming Fe stained for 100mm					E 10	∃.∷								
Log	3 Scale 1:25							-			ROCK	LG 2	2706	4.001.GP	J 16/

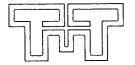



TONKIN & TAYLOR LTD

DRILL HOLE LOG

BOREHOLE No: BH1 Hole Location: Garden Shed

SHEET 3 OF 5


TONKIN & TAYLOR LTD

DRILL HOLE LOG

BOREHOLE No: BH1 Hole Location: Garden Shed

SHEET 4 OF 5

JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND DRILL TYPE: 303CR HOLE STARTED: 14/4/10 CO-ORDINATES 6472355.72 mN 2656430.96 mE HOLE FINISHED: 16/4/10 DATUM: Geodetic 49 DRILLED BY: Drill Force DIRECTION: 0.00° R.L. GROUND: 109.20 m CHECKED: CJL LOGGED BY: STMM ANGLE FROM HORIZ .: -90.00 ° R.L. COLLAR: m DESCRIPTION OF CORE **ROCK DEFECTS** ROCK OR SOIL TYPE, WEATHERING, -3 CORE LOSS -30 /LIFT (%) -100 METHOD, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED HARDNESS, STRENGTH, COLOUR, DRILL WATER LOSS (%) DATE / DEPTH DEFECT LOG AND SHEARED ZONES/SEAMS 8 WATER LITHOLOGICAL FEATURES (bedding, cement, RoD GEOLOGICAL foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS Likely core loss 15.0m to 15.28m Medium to coarse GRAVEL, angular to sub-rounded, very loose, moist, likely drilling disturbance Gravelly SAND, slightly silty, orange brown, very dense, moist, gravel is sub-rounded SW-MW SANDSTONE, brown pink, extremely weak 16.2m: Joint fragment ~70°, Fe stained 16.4m: 2x Joints 70°, planar, smooth, tight (1mm), Fe stained, spacing 150mm. Core breaks around joint CORNWALLIS FORMATION CONGLOMERATE, medium grained 17.7m: Joint 80°, planar, smooth, tight (1mm), Fe stained. Core breaks around joints CORE LOSS from 18.05m to 19.5m CORE LOSS from 19.5m to 19.8m Gravelly, SAND, very loose, wet, recovered as mud, likely drilling induced ROCKLG 27064.001.GP.

DRILL HOLE LOG

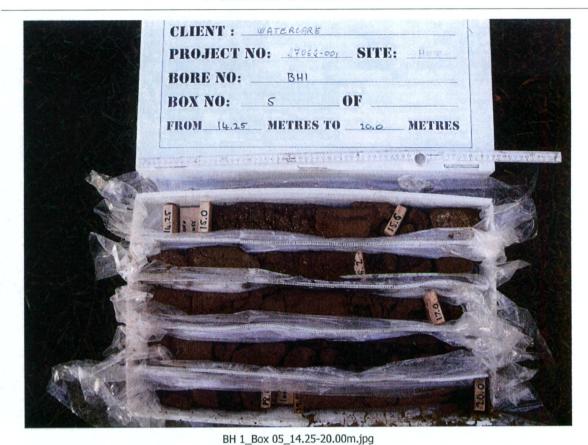
BOREHOLE No: BH1 Hole Location: Garden Shed

SHEET 5 OF 5

												10011 070				
_	OJECT: HUIA WATER TREATMENT P -ORDINATES 6472355.72 mN	LANT	INVES	TIGA	TIO	N_				AIMA, 303CI	AUCKLAND HOLE ST	JOB No: 2706 ARTED: 14/4/10	34.UL)1	•	
,U	2656430.96 mE						DAT			Geode	•	NISHED: 16/4/10				
ΝF	RECTION: 0.00 °									109.20		BY: Drill Force				
	GLE FROM HORIZ.: -90.00 °						R.L.	COLL	AR:	m		BY: STMM	CHE	CKED	: CJ	L_
Т	DESCRIPTION OF CORE	т	Ι			Τ.,					ROCK DEFECTS		T		Т	Τ-
	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR,	<u>ي</u>		S) (e	l ss -	METHOD, CORE & CASING	3 g	90	ဗ္ဗ	FRACTURE LOG spacing of natural fractures (cm)	SIGNIFICANT JOINTS, BEDDING AND SHEARED ZONES/SEAMS		Æ	ا ج	<u> </u>	al X
rı	LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK WEATHERING	ROCK	PT LOAD / UCS TEST (MPa)	CORE LOSS	E&C	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	TURE g of na			DATE / DEPTH	ROD (%)	W	CORE BOX
3	rollation, mineralogy, textore, etc),	WEAT	STR	TIST	g :	S S	TEST	GRAP	DEFE	RACT pacing fractu	DEFECT TYPE, SHAPE, ROUGI APERTURE, INFILLING, SPACIN		DATE	~ ^{\$}	ෂ	3 8
3				-		된				L S	ANGLES ARE NORMAL TO CO	RF AXIS				
l		*****	\$55£	&	, <u>2</u> 8	8 ₹				85.25	ANGELO / INC. INC. INC. INC. INC. INC. INC. INC.				หล	R L
	disturbance SANDSTONE	7					=		公,							11
	MW, brown grey SANDSTONE, extremely weak, highly disturbed by					þ	=		N.					0	Ш	89.0
-	drilling					ì	=		X						Ш	Ħ
+	SW, light grey pink hue, medium					T	ļ.,-		`							Ц
-	SANDSTONE, extremely weak, slilghtly softened along very thin SILTSTONE				Ш		20.5—								-111	
	layers, <5mm thick				111		=							됩		88.5
							=									
							-									
					Ш		21.0		l		21m: Joint 80°, curved to in tight, Fe stained	regular, smooth,	ł			\l
l					Ш		=		1		tight, i'e stanted					88
					$\ \ $.	1 =		'						Ш	\parallel
l					Ш		=							ន	Ш	Ц
					Ш		21.5—	1					1 8			Н
					$\ \ $		=		,				15/04/2010		HÌ	87
١					H	-	1 :		\		21.7m: Joint 90°, irregular	smooth, tight, clean	F	\Box		
					$\ \ \ $		-		,						111	\parallel
	22m: becoming fine				Ш		22.0-				22.0m: Bedding 25-30°					Ш
5	· ·				Ш		-						1	8		87
SW COMMALLIS FORMATION					$\ \ $		=				00.2 P. Hills - 050 diamin	-	ļ			
	22.3m: 20mm SILTSTONE layer, softened				Ш	П	=				22.3m: Bedding 25° dippir	ıg.		1		11
3					H	╁	22.5							Н		
1					Ш	H	:	1								و و
٤								_			Ì					║쁜
3					Ш	⊧	: :	1						5	11	
إد					Ш		23.0-	-					1		\parallel	Ш
ני					$\ \ $						23.05m: Joint 38°, tight (1]	- []	
]	#	:	-	١.		23.15m: Joint 20°, planar, stained.	smoon, ugut, re		Н	Ш	84
						П		}			23.3m: Bedding 20°-25°.					Ш
					111	H	23.5	-							П	Ш
					Ш		: :	3						67		Ш
																8
]								
					Ш	\coprod	24.0-	1	1		24m: Toint 000 -longs	igh tight Factoined		\vdash		
					$\ \ $	$\ $]			24m: Joint 90°, planar, ro 300mm long.	agn, ugni, re stamed,				
						$\ \ $		3								8
						,	<u>.</u> '	4						129		$\ \ $
						$\ \ '$	24.5-	3						11		
	24.5m: 10mm SILTSTONE layer					Ш	124.5	┧					0100707		-	Ш,
						\coprod]				-	ا ا		_	
_	END OF BOREHOLE AT 24.75m. Standpipe piezometers installed, see	\prod		N>:	ю			╡ ̄								
	BH1-PZ for details.		11111	11	Ш	Ш	1	コ	1	1111	11			1 1	- 11	111

BH 1_Box 01_00.00-03.50m.jpg

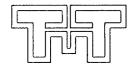
BH 1_Box 02_03.50-08.25m.jpg



BH 1_Box 03_08.25-11.35m.jpg

BH 1_Box 04_11.35-14.25m.jpg

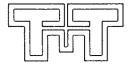
Tonkin & Taylor 27064.001


CLIENT:
PROJECT NO:
SITE:
BORE NO:
BOX NO:
FROM 20.0 METRES TO 22.74 METRES

BH 1_Box 06_20.00-22.75m.jpg

Tonkin & Taylor 27064.001

BH 1_Box 07_22.75-24.75m_EoB.jpg



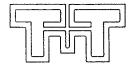
DRILL HOLE LOG

BOREHOLE No: BH2 Hole Location: Behind Sludge Thickener Tank

SHEET 1 OF 5

PF	ROJECT: HUIA WATER TREATMENT PI	ANT	INVES	STIGA	TION	1	LOCATIO	N: W	AIMA	, AUCKLAND	JOB No: 27	064.00)1			
CC	D-ORDINATES 6472402.56 mN 2656360.03 mE						DRILL TY	PE:								V
_	RECTION: 0.00 °						DATUM: R.L. GRO	רואור		letic 49 HOLE FINISHE 00 m DRILLED BY:		,				
	NGLE FROM HORIZ.: -90.00 °						R.L. COLI			LOGGED BY:		CHE	CKE	D: (CJL	
	DESCRIPTION OF CORE									ROCK DEFECTS						
	ROCK OR SOIL TYPE, WEATHERING,					Š										
TIN5	HARDNESS, STRENGTH, COLOUR,	ROCK WEATHERING	Lĕ	UCS Pa)	SSC %)	CASII	TEST SYMBOL DEPTH (m) K GRAPHIC LOG	၅	FRACTURE LOG spacing of natural fractures (cm)	SIGNIFICANT JOINTS, BEDDING, CRUS AND SHEARED ZONES/SEAMS	HED	HT4	<u>@</u>	۱ ی	LOSS (%)	ŏ
GEOLOGICAL UNIT	LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	S E	ROCK STRENGTH	PT LOAD / UCS TEST (MPa)	RE LC JFT (RE &	TEST SYMBOL DEPTH (m) GRAPHIC LOG	DEFECT LOG	TURE	DEFECT TYPE, SHAPE, ROUGHNESS,		DATE / DEPTH	RQD (%)	WATER	DSS (CORE BOX
OLOG		Š	l st	PT.	8 =	0,00	TES DE GRA	DEF	FRAC	APERTURE, INFILLING, SPACING		DAT	"	- 8	בֿב	ŏ
ğ						THO				ANGLES ARE NORMAL TO CORE AXIS				ŀ		
		\$8 \$ \$	288£	£ 1	"₽ <u>8</u>	Z₩			858					۲	18K	115.6
TS	Clayey SILT, dark brown, soft, low plasticity, wet, numerous organic						_ <u>-</u> _×									1
\vdash	Silty SAND, dark orange, dense but	1			Ш		- -									_
	disturbed by hand auger, low plasticity, moist, numerous roots	Ш		İ	Ш		∃×∵									
	Borehole filled with bentonite and drilling]× ;.									
	restart HQ. Ground samples piled next to rig and cuttings logged					GER	0.5— * 🔀							- 1		14,5—
	rig and cuttings logged					HAND AUGER										
			$\Pi\Pi\Pi$			HAN										
							12×									<u>۔</u> ھے ا
İ		Ш	ШШ				1.0 X									114.
				1			3××									
			11111				k									ـَـ ا
	Sandy SILT, light grey orange mottled,	 				_	X 🕏						'			
	soft, plastic, moist, few rare roots 1.45m: becoming orange					Ħ	<u> </u>								Ш	13.5—
																-
	1.6m: becoming pink speckled, firm		$\ \ \ $				1 ×								$\ \ $	
₹	1.75m: 50mm sand inclusions on side of					١.									Ш	Ļ
15	the core					=			Ì							-
COLLUVIUM	Silty, fine to medium SAND, light grey	1					2.0 X									13
≅	with some pink speckles, dense, moist, some rare medium sand inclusions		$\{ $				l ∃×û		!!!!							
	Some rare medium sand merusions	$\parallel \parallel \parallel$				⊢]× ૂ									=
1																
	2.5mm, some venna reets			1			2.5—X		Ш				l			12
	2.5m; some young roots			İ	1111	E	∃*`×									=
					$\ \ $	ľ	∃ <u>*</u> ×]								
	2.8m: 150mm very loose, recovered as				$\ \ $		‡;`×	1								
Ì	sand, very wet						TI X]								112.0
	PUSH TUBE: Sample core not logged]			\prod		TE III	1						[
						 .										
						=	ΛΕШ	1								
							∃/ \		$\ \ $							
	Silty, fine to medium SAND, light grey	 		1		\vdash			[][]							11
	with some pink speckles, dense, moist					F]* 🖫	:								
					-	\vdash	▎∄▓	1								
Ž	SAND, slightly silty, light greyish brown with pink hue, loose, moist, some Fe					1	🗱	;								
II	stained. Upper 100mm are blocky						4.0 X								$\ \ $	11.0-
ZW.						=	∃,∷	1		•						
l _©	4.15m: 10mm very soft layer at 10°						🕸									
LIS	4.33m: 10mm very soft layer dipping at								$\ \ \ $							
CORNWALLIS FORMATION	10°] <u>.</u>]×	1/								m.
Ž	4.5m: becoming dense with rare relict				\prod	Γ] *] - 	1	$\ \ $	4.5m: Relict joints dipping 70°						Box
						\ .										
HW.	extremely weak, highly fractured but					=	× ×								$\ \ $	
CW/HW	interlocking. No polished surfaces, some Fe staining					1	<u> </u>					-				
æ	g Scale 1:25			Ш	Ш	_	1 5 5	1	Ш	.	RO	CKLG :	2706	4.001	GPJ	16/
LO	5 Doub 1.23										- 1-					

DRILL HOLE LOG


BOREHOLE No: BH2

Hole Location: Behind Sludge Thickener Tank

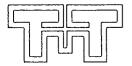
SHEET 2 OF 5

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 CO-ORDINATES 6472402.56 mN DRILL TYPE: 303CR HOLE STARTED: 19/4/10 2656360.03 mE DATUM: HOLE FINISHED: 20/4/10 Geodetic 49 DIRECTION: 0.00° R.L. GROUND: 115.00 m DRILLED BY: Drill Force ANGLE FROM HORIZ .: -90.00 ° R.L. COLLAR: m LOGGED BY: STMM CHECKED: CJL ROCK DEFECTS DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING METHOD, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED DRILL WATER LOSS (%) CORE BOX HARDNESS, STRENGTH, COLOUR, DATE / DEPTH CORE LOSS / LIFT (%) DEFECT LOG AND SHEARED ZONES/SEAMS 8 WATER LITHOLOGICAL FEATURES (bedding, cement, Rab foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING GEOL ANGLES ARE NORMAL TO CORE AXIS 3225 សខរ 14.8m: becoming medium grained, medium Medium SAND, loose to medium dense, green grey with some pink fine inclusions, medium dense to dense 5.5m: becoming very dense silty SAND to 5.5m: Relict joints Fe stained, inclined 45° to SANDSTONE, extremely weak. 5.8m: becoming medium SAND, orange brown, dense 6.7m: heavily Fe stained on relict joint dipping Fine to medium GRAVEL, slightly sandy, dense, wet. Clasts are sub-rounded to CORNWALLIS FORMATION 00 sub-angular, light brown colour, grey hue, some heavy Fe stained on relict joints 00 *0*. e 100 0 0 7.7m: becoming reddish brown 7.8m: becoming loose 20/4/1 8.25m: becoming light brown, grey hue, 00 8.25m: Joint 90°, relict. dense, relict vertical joint split the core to 0.0 00 00 9m: Joint 90°, relict with clay gouge. 9m: core is very weak, a vertical joint is 0 filled with white to light grey clayey SILT, plastic, moist, clay to 5mm thick 00 0. e 0 = HW, orange brown, grey pink hue, coarse 9.8m: Bedding 10°, relict.

SANDSTONE, extremely weak, sub-rounded to sub-angular clasts

TONKIN & TAYLOR LTD

DRILL HOLE LOG

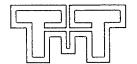

BOREHOLE No: BH2

Hole Location: Behind Sludge Thickener Tank

ROCKLG 27064.001.GP.

SHEET 3 OF 5

JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND HOLE STARTED: 19/4/10 CO-ORDINATES 6472402.56 mN DRILL TYPE: 303CR 2656360.03 mE HOLE FINISHED: 20/4/10 DATUM: Geodetic 49 DIRECTION: 0.00° R.L. GROUND: 115.00 m DRILLED BY: Drill Force CHECKED: CJL ANGLE FROM HORIZ .: -90.00 ° R.L. COLLAR: m LOGGED BY: STMM ROCK DEFECTS **DESCRIPTION OF CORE** ROCK OR SOIL TYPE, WEATHERING, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED PTLOAD/UCS TEST (MPa) CORELOSS /LIFT (%) HARDNESS, STRENGTH, COLOUR, DATE / DEPTH TEST SYMBO DEFECT LOG Rab (%) AND SHEARED ZONES/SEAMS DEPTH (m) WATER LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICAL foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING METHOD, ANGLES ARE NORMAL TO CORE AXIS . £≨&& \$22£8 HW, orange brown, grey pink hue, coarse SANDSTONE, extremely weak, 9.95m: Bedding 10°, white clay infilling. sub-rounded to sub-angular clasts 10.25m: Bedding 10°, possibly slickensided, softened across 10mm and white silty clay filling 1mm thick 10.4m: Some relict joints, Fe stained. 10.65m: Bedding 10°, Fe stained. 10.8m: Bedding 10°, Fe stained. 11m: Joint 60°, Fe stained. 11.3m: Bedding 10°, planar, slickensided, tight (1mm), clay gouge white silt striated. 11.7m: 10mm SILTSTONE, weak, 11.7m: Bedding 10°. softened 12.1m: 10mm softened CORE LOSS from 12.3m to 12.7m CORNWALLIS 12.7m: Joint 90°, planar, Fe stained. HW/CW 12.8m: Joint 20°, planar, smooth to slickensided, Fe stained and clay gouge, tight. 4 13.1m: Joint 60°, planar, smooth, tight, Fe stained and clay gouge. 13.9m: Joint 15°, irregular, rough, tight, Fe stained. 13.95m: Joint 10°, planar, smooth, tight, clay gouge and Fe stained, white clay shining. 14.35m: Joint 40°, planar, smooth, open (10mm), fragments. 14.6m: Joint 40°, planar, slickensided, tight, Fe stained and clay gouge, slickensided and



DRILL HOLE LOG

BOREHOLE No: BH2 Hole Location: Behind Sludge Thickener Tank

SHEET 4 OF 5

	ROJECT: HUIA WATER TREATMENT PL D-ORDINATES 6472402.56 mN 2656360.03 mE					-	DRII	L TY	PE:	303CF					
OIF	2030300.03 ME RECTION: 0.00 °						DAT R.L.		UND:	Geode 115.00					
	IGLE FROM HORIZ.: -90.00 °								LAR:			CHEC	CKE	ED: CJ	L
	DESCRIPTION OF CORE		1	r		_	_				ROCK DEFECTS				_
GEOLOGICAL GIVII	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	SW ROCK MW WEATHERING	- R4 ROCK - R3 STRENGTH	PTLOAD / UCS TEST (MPa)	-3 CORE LOSS -30 / LIFT (%)	METHOD, CORE & CASING	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	-50 FRACTURE LOG -10 spacing of natural -1 fractures (cm)	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS	DATE / DEPTH	ROD (%)	WATER S DRILL WATER	CORE BOX
	MW, grey with pink hue, medium to coarse SANDSTONE, extremely weak, clasts are sub-rounded to sub-angular					Ħ	15.5		نبتريد ر		15.5m: Bands of Fe stained material dipping at		100		Box 500
NOI	15.5m: becoming brown, Fe stained 15.95m: 5mm SILTSTONE						16.0				50°. 15.6m: Joint 50°, white clay filling 1mm. 15.95m: Bedding 10°.				99.
HW/CW CORNWALLIS FORMATION						F	16.5						52		98.
HW/CW CON						Ħ	17.0)		16.6m: Joint 90°, planar, smooth, tight, clay gouge, white.	19/04/2010	91		98
	MW, grey with pink hue, medium to					111	17.5—		/		17.35m: Joint 70°, irregular, rough, Fe stained, tight, length 100mm.		09		900
Z	coarse SANDSTONE, weak. Clasts are sub-rounded to sub-angular					П	18.0		/		18.1m: Joint 60°, planar, rough, open (2mm), fragments.		8		97
JIS FORMALIO	CORE LOSS from 18.55m to 18.95m						18.5	X			18.55m: Highly fractured recovered as gravel.				96
MW COKNWALLIS FORMATION	18.95 to 19.2m; core is very wet					Ħ	19.0-		**		18.95m: Highly fractured, recovered as gravel.		53		9
						E	20.		Į,		19.85m: Join@O°, planar, rough, tight, clay gouge, white.		59		

DRILL HOLE LOG

BOREHOLE No: BH2 Hole Location: Behind Sludge Thickener Tank

SHEET 5 OF 5

	ROJECT: HUIA WATER TREATMENT P	LANI	INVES	TIGA	TION	1	LOC	ATIO	N: W/	AIMA,	AUCKLAND	JOB No	: 27064.	001				
C	D-ORDINATES 6472402.56 mN 2656360.03 mE									303CI		HOLE STARTED: 19/						
							DATU				etic 49	HOLE FINISHED: 20/						
	RECTION: 0.00 ° NGLE FROM HORIZ.: -90.00 °								JND: .AR:	115.0	o m	DRILLED BY: Drill Fo LOGGED BY: STMM		IEC	KFI	D: C	:. 11	
_	DESCRIPTION OF CORE						N.L.		.AIN.	111	ROCK DEFECT		- 01	iLO.	110	<u> </u>	, U.L.	
Т	ROCK OR SOIL TYPE, WEATHERING,	Т				ان							1		Т	T		Γ
	HARDNESS, STRENGTH, COLOUR,	2	<u> ۽</u>	UCS (e,	10 CORE LOSS 10 / LIFT (%)	ASIN	g E	ဗို	g	FRACTURE LOG spacing of natural fractures (cm)	SIGNIFICANT JO AND SHEARED	INTS, BEDDING, CRUSHED		Ĕĺ	<u>ş</u>	۾ اڇ	چ أ	۱×
	LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK	ROCK STRENGTH	PT LOAD / UCS TEST (MPa)	CORE LOSS / LIFT (%)	8	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	g of n	DESCRIPTION OF		İ	DATE / DEPTH	Rob (%)	WATER	SS	CORE BOX
3	Total Long, Time Tale 19, 100 and 19, 100	MEA.	R R	TES.	SO 1	8	TEST GE	GRAF	DE F	RAC1 pacing fractu	APERTURE, INF	SHAPE, ROUGHNESS, ILLING, SPACING		DATE	œ	> a	3	8
3				֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓				Ĭ		ιικ								
١		₹	255E	₽ 2	258	ME 18				850-	ANGLES ARE N	DRMAL TO CORE AXIS				Ж	815	
₹	SANDSTONE, as previous					ll	\dashv					·		\top	\top	7	††	95.
					Ш	F	3								29	Ш	П	
					_	Н	Ⅎ							H	\dashv		П	
2							4						ļ				$\ $	
3							20.5								1		П	94.
3						=	3								55	Ш	$\ $	
				}			∃											-
NOTI WANTED I CITTUM VINOS MIM							Ⅎ											_
AA TAT							21.0					·				\parallel	\coprod	Ř
	END OF BOREHOLE AT 21.0m.				$\ \ \ $													
	Standpipe piezometers installed; see						=									H		
l	BH2-PZ for details.				Ш		=										П	ı
																11		ı
		Ш			$\ \ $		21.5										Н	93
							Ę										П	l
					Ш	1											Ц	1
			<u> </u>			il	_										П	l
			<u> </u>				22.0-						ļ				$\ $	93
Į			11111		IIII	Ш	-			1111	1							ı
					Ш						İ							1
							Ξ								ı		П	
							=							- 1	1			١,
							22.5—										П	۱"
			Ш			1	-									-11	Ш	
Į			Ш				_							ł			$\ $	ı
					$\ \ $												$\ $	
							23.0											9
					$\ \ $		_											
					$\ \ $								-				$\ $	
		$\ \ $					23.5											9
I							-											
							Ξ											
					[]]		=											
					$\ \ $													
							24.0											9
							=]		-			
															-			
					$\ \ $		╡											
							24.5								1			9
			11111				\exists											
					$\ \ $										1			
ı		$\parallel \parallel \parallel$	$\Pi\Pi\Pi$	l	Ш						i			- 1	- 1	H	Ш	1

BH 2_Box 00_00.00-01.30m.jpg

BH 2_Box 01_01.30-04.60m.jpg

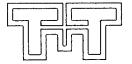
Tonkin & Taylor 27064.001

BH 2_Box 02_04.60-07.25m.jpg

BH 2_Box 03_07.25-09.60m.jpg

Tonkin & Taylor 27064.001

BH 2_Box 04_09.60-12.00m.jpg


BH 2_Box 05_12.00-15.15m.jpg

BH 2_Box 06_15.15-17.85m.jpg

BH 2_Box 07_17.85-21.00_EoB.jpg

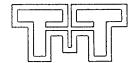
4.4m: becoming loose to very loose, wet

COBBLES and PEBBLES of SANDSTONE, loose

Log Scale 1:25

TONKIN & TAYLOR LTD

DRILL HOLE LOG

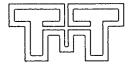

BOREHOLE No: BH3
Hole Location: Behind

Washwater Thickener

ROCKLG 27064.001.GPJ

SHEET 1 OF 5

JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND CO-ORDINATES 6472421.61 mN DRILL TYPE: 303CR HOLE STARTED: 21/4/10 2656522.94 mE DATUM: Geodetic 49 HOLE FINISHED: 22/4/10 R.L. GROUND: 109.28 m DRILLED BY: Drill Force DIRECTION: 0.00° ANGLE FROM HORIZ.: -90.00 ° R.L. COLLAR: m LOGGED BY: STMM CHECKED: CJL ROCK DEFECTS DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING, METHOD, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED DRILL WATER LOSS (%) CORE BOX PT LOAD / UCS TEST (MPa) HARDNESS, STRENGTH, COLOUR, DEPTH GRAPHIC LOG TEST SYMBOL DEFECT LOG CORE LOSS /LIFT (%) AND SHEARED ZONES/SEAMS શ LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICAL 8 DATE / I foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS #88#8 Clayey SILT, dark brown, dry, non-plastic, thickness 10mm Rubbles of dark grey SANDSTONE, HW/CW CRNWLS FMN Silty SAND, orange brown with some Fe stain Silty SAND, dark grey Fine to medium SAND, dark grey, greenish blue hue, medium dense to loose, wet, some Fe stain 2.35m: becoming very loose, wet HW, dark orange brown, fine to medium SANDSTONE, extremely weak, Fe stained CORE LOSS from 2.85 to 3.1m SW-MW, grey greenish, highly fractured, medium SANDSTONE, extremely weak ₩ Fine to medium SAND, brown orange, very loose, wet 4.2m: fine SAND, dark grey, moist



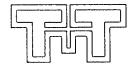
DRILL HOLE LOG

BOREHOLE No: BH3
Hole Location: Behind
Washwater Thickener

SHEET 2 OF 5

PR	OJECT: HUIA WATER TREATMENT PL	ANT	INVES	TIGA	TION		LOCATIO	N: W	AIMA,	AUCKLAND JOB No: 27	064.001	_			
co	0-ORDINATES 6472421.61 mN 2656522.94 mE						DRILL TY	PE:							
							DATUM:		Geode)				
	RECTION: 0.00°						R.L. GRO				CHEC	VE	n. (~ II	
	GLE FROM HORIZ.: -90.00 °						R.L. COL	LAR:	m	LOGGED BY: STMM ROCK DEFECTS	CHEC	VE	<u>υ.</u> (UJL	-
Т	DESCRIPTION OF CORE	1	Ι		1	Т				ROCK DEFECTS	ï	Т	\neg		Т
	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR,	ی ا	_	l ^κ $^{\sim}$	ا ۱٫٫۰	HOD, CORE & CASING	ر ا م	ا س		SIGNIFICANT JOINTS, BEDDING, CRUSHED	E		- [,	œ.	L
3	LITHOLOGICAL FEATURES (bedding, cement,	ROCK	ROCK STRENGTH	PT LOAD / UCS TEST (MPa)	CORE LOSS /LIFT (%)	5	DEPTH (m) GRAPHIC LOG	DEFECT LOG	FRACTURE LOG spacing of natural fractures (cm)	AND SHEARED ZONES/SEAMS	DATE / DEPTH	RQD (%)	WATER	DRILL WATER LOSS (%)	Î
5	foliation, mineralogy, texture, etc);	ĕ₽	SE	ST	岩빌	器	ST SY	E	D Signation	DEFECT TYPE, SHAPE, ROUGHNESS,	1	[월	×	Ęğ	Š
GEOLOGICAL		🔻	ο	FF	ŏ `	ŏ	H 0 8	8	Space from	APERTURE, INFILLING, SPACING	ă		- 1	<u> </u>	Τ
8										ANGLES ARE NORMAL TO CORE AXIS		İ			1
		\$\$\$\$ 1111	\$25.5	& •	288	WE		<u> </u>	826-				'لـــــ	<u>ម</u>	L
T								4					-	Ш	
-			11111			Ħ	- 500	4				0			
-			11111			ı	100 0	4	[[]]			-		Ш	104
ŀ	Dark grey SAND, loose, moist		11111			_	■ - Cc	•				\neg			
-				4		•	5	}						$\ \ $	
-				2 5 N=7		F.	1700	-						Ш	
-				N=/			Ⅎ ヨः※	1							
-	5.8m; becoming wet						■ 700	1				ㅓ			103
	J.om, occoming wet					F	3.								Ì
1			$\ \ \ $	1		-	6.0					ļ			
ł	SANDSTONE, some brown					\dashv						\dashv	. 1		
	discolouration and patches				$\ \ \ $	Ħ	4					^		Ш	١,
1	6.3m: highly fractured to pebble size				Ш	Ħ	7					•		Ш	
							6.5					\dashv	ıl	Ш	H
١							°.5						. 1	Ш	Ш
١	6.65m: wet PEBBLES of grey sandstone					F	3	/	1	l		13	1		$\ $
	6.7m: becoming very weak SANDSTONE			4						6.7m: Joint 60°, planar, smooth, Fe stained.				Ш	ļ
						\dashv	-					\dashv		Ш	$\ $
_							7.0						1	Ш	I
ğΙ	7.1m: highly fractured from pebbles to fine						-	1/6		7.1m: Fragments of polish striated surface Fe			1	Ш	
ξl	gravel size, wet					F		~	1	stain. Orientation unknown.		٥		Ш	
쵯							3		!!!!!						ľ
S S							3								
			$\ \ \ \ $				7.5							Ш	Ш
¥ا ۱	7.1m. highly fractured from pebbles to fine gravel size, wet UW, dark grey, medium SANDSTONE, weak							1		7.65 L 200		П		Ш	Ш.
MW COKN	weak						=]/		7.65m: Joint 80°, planar, rough, tight (1mm), silica coating.				Ш	H,
3								'		3				113	
<u>≯</u>						F	8.0					67		Ш	
_							8.0							Ш	
										8.1m: some disk breaking	1				П
	Dark grey, medium SAND, very loose, wet													Ш	H
							-\	7				Π		11	11
							8.5-								
							ΛEΙ								H
						F	∄``	1	$\ \ \ $			-			
	8.8m: pebbles, drilling induced						🕸			1		l			ľ
	disturbance	/								8		l			$\ \ $
	MW, dark grey, medium SANDSTONE, weak						9.0								$\ \ $
	weak					厂	🗆		1						$\ $
								7		9.2m: 2x Joints 60°, irregular, rough, tight,					Ц
							ΧEΙ			clean, spacing 50mm.					$\ $
	SAND, very loose, wet					F	9.5	<u> </u>				0			$\ $
						1	[™] ∃::::								$\ $
															$\ $
	i					1	🕸								$\ \cdot\ $
					PO04606693			. 1	1111	-					11
	Dark grey SILTSTONE, extremely weak 9.9m: becoming soft SILT. moist			l.			菜	3]			ļ	Г	1	Ш	IJ

TONKIN & TAYLOR LTD

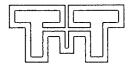

DRILL HOLE LOG

BOREHOLE No: BH3
Hole Location: Behind

Washwater Thickener

SHEET 3 OF 5

JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND HOLE STARTED: 21/4/10 DRILL TYPE: 303CR CO-ORDINATES 6472421.61 mN 2656522.94 mE HOLE FINISHED: 22/4/10 DATUM: Geodetic 49 DRILLED BY: Drill Force DIRECTION: 0.00° R.L. GROUND: 109.28 m LOGGED BY: STMM CHECKED: CJL R.L. COLLAR: m ANGLE FROM HORIZ .: -90.00 ° **ROCK DEFECTS** DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING, METHOD, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED DRILL WATER LOSS (%) CORE BOX PT LOAD / UCS TEST (MPa) HARDNESS, STRENGTH, COLOUR, GEOLOGICAL UNIT DEFECT LOG 8 DEPTH (m) AND SHEARED ZONES/SEAMS WATER LITHOLOGICAL FEATURES (bedding, cement, gg foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS KI SI K 10m: Silty, fine SAND, very loose, wet 9 Fine SANDSTONE, extremely weak 10.67m: Bedding 38°. 10.67m: SILTSTONE, extremely weak 10.7m: fine SANDSTONE, very weak 10.72m: medium to coarse SANDSTONE, very weak 8 11.25m: Core softened to SAND, end of 11.35m: Drill induced fractures along run. CONGLOMERATE, very weak, sub-angular clasts, white, black and green 11.5m: Joint 60°, planar, rough, tight, clean. in colour. Grey overall colour, pinkish hue \$ 12.1m: Drilling induced fractures along run. CORE LOSS SW CORNWALLIS FORMATION 8 CONGLOMERATE, as previous 12.85m: Drilling induced fractures along run. Ŏ Ø 13.12m: Fine to medium SANDSTONE, z 13.2m: Joint 70°, planar, rough, tight, clean. extremely weak CORE LOSS from 13.6 to 14.25m Ground completely loosed overnight and washed away at drilling start CONGLOMERATE, as above 14.45m: becoming medium to fine SANDSTONE CORE LOSS from 14.5 to 14.8m 14.8m: Joint 70°, planar, rough, tight, clean. CONGLOMERATE 14.9m: Bedding 20°.


TONKIN & TAYLOR LTD

DRILL HOLE LOG

BOREHOLE No: BH3
Hole Location: Behind
Washwater Thickener

SHEET 4 OF 5

JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND HOLE STARTED: 21/4/10 **CO-ORDINATES** 6472421.61 mN DRILL TYPE: 303CR 2656522.94 mE DATUM: Geodetic 49 HOLE FINISHED: 22/4/10 DIRECTION: 0.00° R.L. GROUND: 109.28 m DRILLED BY: Drill Force CHECKED: CJL ANGLE FROM HORIZ .: -90.00 ° R.L. COLLAR: m LOGGED BY: STMM **ROCK DEFECTS** DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING, THOD, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED DATE / DEPTH HARDNESS, STRENGTH, COLOUR, RQD (%) AND SHEARED ZONES/SEAMS WATER LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING GEOL ANGLES ARE NORMAL TO CORE AXIS 22222 20222 UW, dark grey SILTSTONE, extremely weak CORE LOSS from 15.1 to 15.65m Þ 15.65m: fine SANDSTONE, extremely 15.75m: Sub-horizontal carbonaceous layer. 15.8m: coarse SANDSTONE, very weak CORE LOSS from 15.85 to 16.4m Coarse gravel with fragments of coarse SANDSTONE 16.55m: Bedding 10°. SILTSTONE, extremely weak 16.6m: SWITCH TO MUD DRILLING Fine SANDSTONE, extremely weak 16.85m: Polished surface 18°, possibly singenetic. CORNWALLIS FORMATION 17.15m: becoming very fine SANDSTONE, with inclusions of fine sandstone, dark grey 8 17.9m: becoming coarse SANDSTONE, extremely weak, uncemented top 100mm 18.1m: Joint 90°, planar, rough, tight, clean. 18.3m: Joint 40°, planar, rough, tight, clean, spacing 70mm. ន SW, grey, coarse SANDSTONE, extremely weak 2 19.6 to 20.35m: softened ₩

TONKIN & TAYLOR LTD

DRILL HOLE LOG

BOREHOLE No: BH3
Hole Location: Behind

Washwater Thickener

ROCKLG 27064.001.GPJ

SHEET 5 OF 5

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 DRILL TYPE: 303CR HOLE STARTED: 21/4/10 CO-ORDINATES 6472421.61 mN 2656522.94 mE HOLE FINISHED: 22/4/10 DATUM: Geodetic 49 DRILLED BY: Drill Force DIRECTION: 0.00° R.L. GROUND: 109.28 m LOGGED BY: STMM CHECKED: CJL R.L. COLLAR: m ANGLE FROM HORIZ .: -90.00 ° **ROCK DEFECTS** DESCRIPTION OF CORE FRA ROCK
FRA STRENGTH
FRA PT LOAD / UCS
TEST (MPa)
CORE LOSS
100
100
METHOD, CORE & CASING ROCK OR SOIL TYPE, WEATHERING, SIGNIFICANT JOINTS, BEDDING, CRUSHED DRILL WATER LOSS (%) CORE BOX HARDNESS, STRENGTH, COLOUR, E S DATE / DEPTH TEST SYMBOL DEFECT LOG 8 AND SHEARED ZONES/SEAMS WATER LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICAL ROD foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS ₹₹₹ ₹88 SANDSTONE, as previous 8 UW, grey, coarse SANDSTONE, extremely weak ß وبنيتي 21.5m: becoming fine SANDSTONE 21.5m: Lamination 10°. 21.85m: Drilling breaking. 21.85m: core dropped from sampler; only partially recovered, 150mm coarse FORMATION SANDSTONE F CORNWALLIS 22.4m: fine SANDSTONE 22.65m: becoming medium SΨ 22.9m; Lamination 30°. F 7 UW, grey SILTSTONE, extremely weak 4 UW, grey, fine to medium SANDSTONE 24.25m: Carbonaceous band 20°. 24.35m: Joint 80°, planar, rough, tight, clean. 24.55m: Joint 34°, planar, rough, tight, clean. 24.6m: becoming very weak END OF BOREHOLE AT 24.85m. Standpipe piezometers installed. See BH3-PZ for details.


PROJECT PAP:

BOBE NO: 6H3

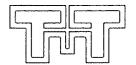
BOX NO: 2 OF

FROM 4 40 METRES TO 7.80 METRES

BH 3_Box 02_04.40-07.80m.jpg

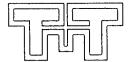
BH 3_Box 03_07.80-11.20m.JPG

BH 3_Box 04_11.20-15.10m.JPG


BH 3_Box 05_15.10-19.00m.JPG

BH 3_Box 06_19.00-22.60m.JPG

BH 3_Box 07_22.60-24.85_EoB.JPG

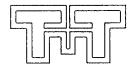


DRILL HOLE LOG

BOREHOLE No: BH4 Hole Location: Side of Lagoon

SHEET 1 OF 5

7	OJECT: HUIA WATER TREATMENT PI	ANT	INVE	STIGA	ATION	1	LOCATIO	N: W	AIMA,	AUCKLAND		JOB No: 27	064.00	01			
	0-ORDINATES 6472370.84 mN 2656466.7 mE					ı	DRILL TY DATUM:		Geode	etic 49	HOLE FINISI						
	RECTION: 0.00°						R.L. GRO			4 m	DRILLED BY		CUE	CVE	=D. (~ II	
_	IGLE FROM HORIZ.: -90.00 ° DESCRIPTION OF CORE						R.L. COLI	AK:		ROCK DEFEC	LOGGED BY	. STIVIIVI	CHE	UKŁ	:ט: (JL	
AL UNI	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	W ROCK	- R3 ROCK - R3 STRENGTH - R1	"	10 CORE LOSS 10 / LIFT (%)	METHOD, CORE & CASING	TEST SYMBOL DEPTH (m) GRAPHIC LOG	DEFECT LOG	FRACTURE LOG spacing of natural fractures (cm)	SIGNIFICANT JO AND SHEARED DEFECT TYPE, APERTURE, INF	DINTS, BEDDING, CRI	S,	DATE / DEPTH	RQD (%)		SO DRILL WATER TOSS (%)	CORE BOX
	COBBLES and GRAVEL, in a sandy matrix, dark brown. Cobbles and gravel of scoria, dry Some steel nails at top					HAND AUGER	0.5————————————————————————————————————		50							5	108,
-	Clayey SILT, light grey, orange mottled, very soft, plastic, moist to wet, some rare organic fragments					HA	1.0 X X X X X X X X X										107.
****	PUSH TUBE: Sample only 50% recovered. Core not logged					TT	2.0 × × × × × × × × ×										106
	Clayey SILT, as previous 3.2m: becoming dark green grey with white sub-rounded small gravel Silty SAND, green grey, very loose, wet					Ш	3.5 × ×										10:
	Reddish brown, slightly silty, medium to coarse SAND, sub-angular PUSH TUBE: Core not logged					II	40 - X X X X X X X X X X X X X X X X X X										9 Box 1

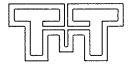


DRILL HOLE LOG

BOREHOLE No: BH4 Hole Location: Side of Lagoon

SHEET 2 OF 5

	O JEOT, LILIA MATER TREATMENT DI	ANIT	. 181	/CC	TICA	TIO		100	- ATI	2NI: 1A	(A 18.	10	ALICKI AND	JOB No: 270	64.0	01			
	OJECT: HUIA WATER TREATMENT PL D-ORDINATES 6472370.84 mN	ANI	IIN	VES	NIGA	TIOI	<u> </u>			YPE:			AUCKLAND HOLE STA	ARTED: 26/4/10	04.0	01			
-	2656466.7 mE							DA [*]	TUM:		Ge	ode	tic 49 HOLE FIN	ISHED: 27/4/10					
	RECTION: 0.00°									DUND				BY: Drill Force	CUE	CK	ED.	CJI	ı
	GLE FROM HORIZ.: -90.00 ° DESCRIPTION OF CORE							R.L	. COL	LAR:	m	_	ROCK DEFECTS	BY: STMM	CHE	CK	ED.	CJI	
	ROCK OR SOIL TYPE, WEATHERING,	Γ	Τ				ပ္												
Ę	HARDNESS, STRENGTH, COLOUR,	ROCK		Έ	r ucs	SSC (%	THOD, CORE & CASING	/BOL	(E) (S)	50	100	spacing of natural fractures (cm)	SIGNIFICANT JOINTS, BEDDING, AND SHEARED ZONES/SEAMS	CRUSHED	EPTH	8	l es	DRILL WATER	ξĺχ.
SICAL	LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK		STRENGTH	PT LOAD / UCS TEST (MPa)	CORE LOSS	ZE.	TEST SYMBOL	DEPTH (m) GRAPHIC LOG	DEFECT LOG	P.T.	tung of	DEFECT TYPE, SHAPE, ROUGHN	IESS,	DATE / DEPTH	RQD (%)	WATER	M TI	CORE BOX
GEOLOGICAL		¥		ß	F #	8 -	β	ļĔ i	g 8	"	Æ	spac	APERTURE, INFILLING, SPACING	1	₫			E -	1
8				m 01 =		n 28	8 본 본				85		ANGLES ARE NORMAL TO CORE	EAXIS				អឌដ	ا
<u>></u>	Reddish brown, slightly silty, medium to	1		Ħ	-		Ť	\vdash	- ×:	-	 Î	ΪĪ			-	\dagger			
ĭ. C	coarse SAND, sub-angular						F		<u> </u>										
	Medium to coarse SAND, slightly silty, light grey, orange laminated, dense, moist						t	1	- *∷								2		103.0-
	5.35m: becoming lighter grey with orange lamination, sub-vertical			Ш			ļ]*::	3	Ш		5.35m: Sub-vertical laminati	on.			27/4/10		
	iammation, sub-vertical			Ш				5.5	≓×.										
				Ш	İ		F	Ì	∃*∷		Ш	Ш			1		=		
				Ш	l				∃,∴		Ш								102.5
					ŀ				∃,⊹		$\ \ $								
	6m: becoming fine grained and 100mm							6.0	∃``									Ш	
	light grey colour			Ш					Ⅎ ʹʹ∷				6.16m: 2 polished surfaces 3	0° dipping, spacing	3	ļ		Ш	
	6.2m: Below polished surfaces becoming coarser sand with some Fe stain			Ш					- *:				50mm.						102.0
							F		∃×:										Ш
							1	6.5	∃×:			\parallel			1				H
	-											П						Ш	Н
								psı	3	3	Ш				ł				101.5
									∃*∵		Ш								
z				Ш			_	ДТ	_ *::		Ш	Ш							_
ATI				$\ \ $			[∃*:								1	Ш	Box
KM				Ш															01.0
LIS FORMATION				Н				- P.T.S.	<u></u>	4									
	PUSH TUBE: Core not logged	Ш	Ш	Ш		$\ \ $		Ш	∄\	Λ		Ш						Ш	
NW.		Ш	Ш		Ì	Ш	l l	:	X E	'								Ш	
COR			$\ \ $			Ш			∄/\	\setminus								Ш	100.5
CW/HW CORNWAI	CAND				1	Ш	_	_ .	,‡,										
CW/	SAND, orange brown, very loose, wet, becoming dense					Ш	∐⊧	:	3							1			
	8.25m: some lens/layers of dense, grey,					H	#	4	1				8.25m: Sub-horizontal lami	nation. Relict					
	medium SAND					HÌ			3		П		sub-vertical joint.				ì	$\ \ $	100.0
	8.4m: fine sand to silt layer, light grey with orange laminatioin, becoming medium						П	8.5	,∃∷		Ш								11
	dense							=	3		Ш	$\ \ $							Ш
	8.75m: Contact with coarse SAND, orange								∃∴		41		8.75m: Bedding 30°.						99.
	brown, loose, wet								3		\parallel						1	Ш	^{99.}
	Medium GRAVEL, orange brown, dense, moist						╂	9.0	₹;	5	Ш	Ш				1			
	9m: becoming dense							İ	3.3	0	П				İ	ļ			
	9.25m: loose, sub-rounded to sub-angular,								₹,		Ш	Ш							99.
	coarse to very coarse gravel, wet						!	=	∄,	9									
								9.	5-}°.	0									
	Possible core loss from 9.6 to 9.75m								方	7									
	9.75m: strong Fe stain, wet							\dashv	#	8									98.
1	9.8m: grading to medium gravel, loose, wet, Fe stained			Ш				=	₹,2	اړه	-[]	Ш				-			[[]

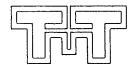

TONKIN & TAYLOR LTD

DRILL HOLE LOG

BOREHOLE No: BH4 Hole Location: Side of Lagoon

SHEET 3 OF 5

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 CO-ORDINATES 6472370.84 mN 2656466.7 mE DRILL TYPE: 303CR HOLE STARTED: 26/4/10 DATUM: Geodetic 49 HOLE FINISHED: 27/4/10 R.L. GROUND: 108.34 m DRILLED BY: Drill Force DIRECTION: 0.00° LOGGED BY: STMM CHECKED: CJL R.L. COLLAR: m ANGLE FROM HORIZ.: -90.00 ° **ROCK DEFECTS** DESCRIPTION OF CORE -3 CORE LOSS -30 / LIFT (%) -100 METHOD, CORE & CASING ROCK OR SOIL TYPE, WEATHERING, SIGNIFICANT JOINTS, BEDDING, CRUSHED DATE / DEPTH HARDNESS, STRENGTH, COLOUR, ROD (%) AND SHEARED ZONES/SEAMS LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICAL foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS ≨ã≨ã GRAVEL, as previous 26/04/2010 10.5m: becoming very dark grey to black due to Fe stain 10.7m: 150mm coarse sub-rounded gravel, loose, wet 10.85m: mix of coarse gravel and coarse sand, loose to medium dense, wet 11.25m: becoming dense, moist 11.6m: becoming orange brown CORNWALLIS FORMATION Grey, coarse SAND, some Fe stain, dense, HW, light grey pink hue, medium to coarse SANDSTONE, orange brown at top, extremely weak 13.25m: striated polished surface 10°, likely intraformational. 14.25m: becoming orange brown with numerous Fe stained bands



DRILL HOLE LOG

BOREHOLE No: BH4 Hole Location: Side of Lagoon

SHEET 4 OF 5

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 6472370.84 mN DRILL TYPE: 303CR HOLE STARTED: 26/4/10 CO-ORDINATES 2656466.7 mE DATUM: Geodetic 49 HOLE FINISHED: 27/4/10 DRILLED BY: Drill Force R.L. GROUND: 108.34 m DIRECTION: 0.00° R.L. COLLAR: m LOGGED BY: STMM CHECKED: CJL ANGLE FROM HORIZ .: -90.00 ° **DESCRIPTION OF CORE** ROCK DEFECTS ROCK OR SOIL TYPE, WEATHERING, CORE LOSS /LIFT (%) , CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED DRILL WATER LOSS (%) CORE BOX HARDNESS, STRENGTH, COLOUR, E TEST SYMBOL ROCK STRENGTH € AND SHEARED ZONES/SEAMS WATER LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICAL 8 foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING METHOD, ANGLES ARE NORMAL TO CORE AXIS ₹\$\$\$ **\$**\$\$\$\$ 15.2m: becoming dark almost black, numerous Fe stained, some gravel F inclusions towards end of run CORNWALLIS 15.75m: becoming very dark grey almost black along Fe stain, dry CW/HW MW, bluish grey SANDSTONE, softened top 50mm, extremely weak 16.3m: 10mm very soft SILT 16.6m: Coarse SAND, uncemented CORNWALLIS FORMATION SANDSTONE, 100mm thick 16.75m: 300mm uncemented SANDSTONE CONGLOMERATE, dark grey, moist, uncemented 17.2m: becoming extremely weak 17.25m: completely uncemented, getting ¥ SANDSTONE, extremely weak SW, grey, coarse SANDSTONE, extremely weak 18.3m; Bedding 20°. Sharp contact with 100mm 88 CONGLOMERATE, extremely weak, 18.4m: Bedding 20°. poorly cemented, sub-angular clasts Sharp contact grey, medium SANDSTONE, extremely weak, poorly cemented 18.75m: Grey with pink hue, medium SW/UW CORNWALLIS SANDSTONE, cemented 19m: uncemented 19.5m: 50mm thick progressive passage to coarse cemented SANDSTONE Log Scale 1:25 ROCKLG 27064.001.GPJ

DRILL HOLE LOG

BOREHOLE No: BH4 Hole Location: Side of Lagoon

SHEET 5 OF 5

PF	OJECT: HUIA WATER TREATMENT PL	ANT	INVES	TIGA	1OIT	1	LOC	ATIO	N: W	AIMA	A, AUCKLAND JOB No: 27064.001				
CC	O-ORDINATES 6472370.84 mN 2656466.7 mE								PE:	303C					-
ווח	2030400.7 Mile RECTION: 0.00 °						DATU R.L. (UND		detic 49 HOLE FINISHED: 27/4/10 34 m DRILLED BY: Drill Force				
1	IGLE FROM HORIZ.: -90.00 °						R.L.				LOGGED BY: STMM CHECK	KEC): C	JL	
	DESCRIPTION OF CORE					,					ROCK DEFECTS	1			_
GEOLOGICAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK WEATHERING	ROCK STRENGTH	PT LOAD / UCS TEST (MPa)	CORE LOSS / LIFT (%)), CORE & CASING	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	FRACTURE LOG spacing of natural	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING	ROD (%)	WATER DRILL WATER	(%) SSO1	CORE BOX
39		\$&&& \$&&&	\$ \$ \$ \$ £	£	. 2 g	METHO				828-	ANGLES ARE NORMAL TO CORE AXIS		83	8 K	
	20.25m: 50mm progressive passage to fine SANDSTONE, cemented					п	20.5—					31 67			88.0
	20.7m: Progressive passage 10mm to medium SANDSTONE, uncemented 20.75m: uncemented conglomerate 20.85m: medium SANDSTONE, uncemented 21m: medium SANDSTONE, extremely weak, cemented					П	21.0		/		21.25m; Joint 50° planer rough tight clean	69			87.5— 87.5—
UW CORNWALLIS FORMATION	21.6m: inclusions of green, medium SANDSTONE, 50mm thick on side of lcore CONGLOMERATE, extremely weak, cemented 110mm SILTSTONE, extremely weak, lpartly cemented Sharp contact with medium SANDSTONE, extremely weak, cemented, softened upper 50mm 22.45m: becoming coarse					TT.	22.0	*/***********************************	_		21.75m: Bedding 10°.	31			86.5—
						П	23.0					53			85.
	23.3m: fine to medium SANDSTONE, partly cemented					Ħ	23.5		簽		23.5m: Highly fractured, possibly drilling induced.	0			85.0—
 	END OF BOREHOLE AT 24m.	 			$\parallel \parallel \parallel$	T	2+.0					+	-	\dagger	<u> </u>
	Standpipe piezometer installed. See BH4-PZ for details.						24.5								84.0—
	Scale 1:25						=				ROCKLG 27	064 (101 G	PI	16/7/10

BH 4_Box 01_00.00-03.75m.jpg

BH 4_Box 02_03.75-07.25m.jpg

Tonkin & Taylor 27064.001

BH 4_Box 04_10.70-13.25m.jpg

BH 4_Box 05_13.25-15.60m.jpg

BH 4_Box 06_15.60-18.20m.jpg

Tonkin & Taylor 27064.001

BH 4_Box 07_18.20-21.00m.jpg

BH 4_Box 08_21.00-24.00m_EoB.jpg

Tonkin & Taylor 27064.001

CO-ORDINATES 6472388.01 mN

TONKIN & TAYLOR LTD DRILL HOLE LOG

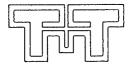
Hole Location: Bush at Service Road Crossing

SHEET 1 OF 1

JOB No: 27064.001

BOREHOLE No: BH4a

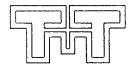
PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND


DRILL TYPE: Hand Auger

HOLE STARTED: 23/4/10

Ar	NGLE FROM HORIZ.: -90.00 ° DESCRIPTION OF CORE						R.L. CC	LLAR	n		LOGGED BY: STMM ROCK DEFECTS	СН	ECK	CEL). (JJL	
GEOLOGICAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK ROCK WW WEATHERING	- R4 ROCK - R2 STRENGTH - R1	R0 PT LOAD / UCS TEST (MPa)	13 CORE LOSS 10 / LIFT (%)	METHOD, CORE & CASING	TEST SYMBOL DEPTH (m)	DEFECT LOG		5 spacing of natural -1 fractures (cm)	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS	Thousand Laboratory	ROD (%)	WATED		- 25 - 50 - 75 LOSS (%)	
FILL	Silty SAND, dark brown on top becoming orange brown, hard to auger. Fragments of metals, bolts and asbestos					HAND AUGER	-*: -*: -*: -*: -*:	×									108.5
_	0.9m: CONCRETE END OF BOREHOLE AT 0.9m.	Ш			Ш	T	1.0		Ħ				T	Ť			108.0
	Unable to Penetrate. Hole backfilled.						2.5										107.5

BH 4A_Box 01_00.00-00.90m_EoB.jpg


DRILL HOLE LOG

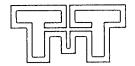
BOREHOLE No: BH5

Hole Location: Water Tank off Woodlands Park Road

SHEET 1 OF 4

PF	ROJECT: HUIA WATER TREATMENT P	LANT	INVES	STIGA	OITA	1	LOCATIO	N: W	AIMA,	AUCKLAND	JOB No: 27	064.0	01			
CC	O-ORDINATES 6472514.35 mN 2656481.19 mE						DRILL TY	PE:			HOLE STARTED: 28/4/10					
DI	RECTION: 0.00 °						DATUM: R.L. GRO	חאוו		etic 49 0 m	HOLE FINISHED: 30/4/10 DRILLED BY: Drill Force)				
	NGLE FROM HORIZ.: -90.00 °						R.L. COLI			O III	LOGGED BY: STMM	CHE	ECK	ED:	CJL	
711	DESCRIPTION OF CORE						,			ROCK DEFEC						
GEOLOGICAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	W ROCK W WEATHERING		PT LOAD / UCS TEST (MPa)	CORE LOSS	METHOD, CORE & CASING	TEST SYMBOL DEPTH (m) CRAPHIC LOG	. DEFECT LOG	FRACTURE LOG spacing of natural fractures (cm)	1	OINTS, BEDDING, CRUSHED DENES/SEAMS SHAPE, ROUGHNESS, FILLING, SPACING NORMAL TO CORE AXIS	DATE / DEPTH	Rab (%)	WATER		CORE BOX
FILL	Clayey SILT, dark brown to orange brown grey mottled. Some cobbles at top, moist, plastic	50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3	č.	6				0.0						888	120.5-
	Im: brick fragments Silty CLAY, light grey, orange brown mottled, soft, moist, plastic. Some organic fragments and <5mm size lenses of loose,					TT HAND AUGER	1.0 × × × × × × × × × × × × × × × × × × ×									120.0-
	grey, medium SAND 2m: size of sandy inclusions increases but <10mm PUSH TUBE: Core not logged					ш	20 - ×									119.0-
COLLUVIUM	3.1m: becoming grey clayey SILT, some orange mottles, soft, moist, plastic 3.25m: Fe stained band along relict bedding Silty SAND, grey with medium black and white crystals, loose, moist 3.5m: very loose, wet					TH TT	3.5		A							117.5
	4.15m: 200mm Fe stain					E	4.0 — X X X X X X X X X X X X X X X X X X									117.0
MW CF	MW, dark grey, medium to coarse SANDSTONE, extremely weak, clasts from sub-rounded to sub-angular					E	5-					OCKLG	S			

TONKIN & TAYLOR LTD

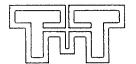

DRILL HOLE LOG

BOREHOLE No: BH5
Hole Location: Water Tank off
Woodlands Park Road

ROCKLG 27064.001.GI

SHEET 2 OF 4

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 HOLE STARTED: 28/4/10 CO-ORDINATES 6472514.35 mN DRILL TYPE: 303CR 2656481.19 mE DATUM: Geodetic 49 HOLE FINISHED: 30/4/10 DIRECTION: 0.00° R.L. GROUND: 121.00 m DRILLED BY: Drill Force LOGGED BY: STMM CHECKED: CJL ANGLE FROM HORIZ.: -90.00 ° R.L. COLLAR: m **ROCK DEFECTS** DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING, CORE & CASING FRACTURE LOG spacing of natural fractures (cm) SIGNIFICANT JOINTS, BEDDING, CRUSHED HARDNESS, STRENGTH, COLOUR, RQD (%) AND SHEARED ZONES/SEAMS LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING METHOD, ANGLES ARE NORMAL TO CORE AXIS ¥88¥ ¥88×8 5m: 300mm dark grey, fine SANDSTONE 6.35m: 50mm softened, wet 6.4m: Bedding 10-20°. ß 6.4m: 150mm SILSTONE, extremely weak, possible contact dipping 10-20° 6.9m: 60mm softened, wet at contact with 100mm coarse SANDSTONE CORNWALLIS FORMATION 7.85m: 100mm SILTSTONE 8.35m: some sub-angular gravel inclusions 8.6m; some <10mm coarse loose SAND inclusions 8 용 9.7m: polished surface striated 30° dipping 9.85m: two polished surface 10° dipping. 9.9m: 10mm wet, uncemented



TONKIN & TAYLOR LTD DRILL HOLE LOG

BOREHOLE No: BH5 Hole Location: Water Tank off Woodlands Park Road

SHEET 3 OF 4

OIF	OJECT: HUIA WATER TREATMENT PL -ORDINATES 6472514.35 mN 2656481.19 mE RECTION: 0.00 ° GLE FROM HORIZ.: -90.00 ° DESCRIPTION OF CORE					•	DRIL DAT R.L.	L TY UM: GRO	PE:	303CR Geode 121.00 m	tic 49 HOLE FINIS	RTED: 28/4/10 SHED: 30/4/10 Y: Drill Force Y: STMM		CKED	: CJ	L
	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	SW ROCK MW WEATHERING	- R4 ROCK - R3 STRENGTH - R1	PTLOAD/UCS TEST (MPa)	-3 CORE LOSS -30 / LIFT (%)	METHOD, CORE & CASING	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	-50 FRACTURE LOG -10 spacing of natural -5 fractures (cm)	SIGNIFICANT JOINTS, BEDDING, C AND SHEARED ZONES/SEAMS DEFECT TYPE, SHAPE, ROUGHNE APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE A	SS,	DATE / DEPTH	RQD (%)	-25 DRILL WATER	
	Grey SILTSTONE, extremely weak 10.25m: 3 layers 10-15mm thick fine SANDSTONE, poorly cemented SILTSTONE, extremely weak, with poorly graded sandy layers 10-20mm thick spacing 50-100mm					T T	10.5				10.25m: Bedding 10°. 10.35m: Polished surface 80°, 10.6m: Bedding 10°.	curved.		80		110.0
MW COMWALLIS FORWING FION	Dark grey, coarse SANDSTONE, with gravel 12.2m: Grey, medium SANDSTONE, with some inclusion of dark coarse sandstone					TT TT	12.0-	X			11.7m: 100mm highly fracture induced on sub-vertical joints. 12.2m: Bedding 10-20°. 12.5m: Polished surface 60° pabove for 10mm. 12.7m: Crushed 70mm across	lanar. Softened		90 80		109.0
33 MIM	13.5m: Highly fractured, coarse SANDSTONE, very weak 13.7m: Grey, medium SANDSTONE and inclusions of dark grey, medium sandstone, extremely weak SILTSTONE, with poorly cemented 10-20mm thick SANDSTONE					E	13.5-	- - × - ×	ixxxxxx		joints. 13.5m: Joint 90°, planar, rougeneer. 14m: Joint 60°, planar, slicke veneer.		ay	0		107
	g Scale 1:25					11.	14.5	××××××××××××××××××××××××××××××××××××××	× × × × × × × × × × × × × × × × × × ×			D	OCKLG	27064	.001 G	PJ 16

Log Scale 1:25

TONKIN & TAYLOR LTD

DRILL HOLE LOG

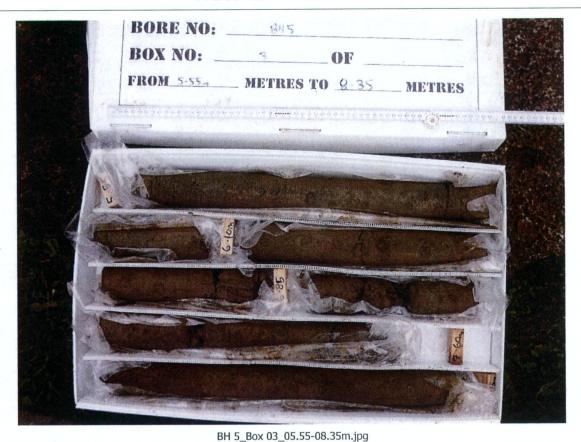
BOREHOLE No: BH5
Hole Location: Water Tank off

ROCKLG 27064,001.GF

Woodlands Park Road

SHEET 4 OF 4

JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND HOLE STARTED: 28/4/10 DRILL TYPE: 303CR CO-ORDINATES 6472514.35 mN 2656481.19 mE HOLE FINISHED: 30/4/10 DATUM: Geodetic 49 R.L. GROUND: 121,00 m DRILLED BY: Drill Force DIRECTION: 0.00° LOGGED BY: STMM CHECKED: CJL ANGLE FROM HORIZ .: -90.00 ° R.L. COLLAR: m DESCRIPTION OF CORE **ROCK DEFECTS** ROCK OR SOIL TYPE, WEATHERING, METHOD, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED HARDNESS, STRENGTH, COLOUR, PT LOAD / UCS TEST (MPa) DRILL WATER LOSS (%) TEST SYMBOL RQD (%) AND SHEARED ZONES/SEAMS LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICAL foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS \$2252 \$ SILTSTONE, as previous 8 15.1m: 150mm medium to coarse MW CORNWALLIS SANDSTONE, weak SW, dark grey, medium SANDSTONE, extremely weak 15.95m: Bedding 10°, Fe stained, 10mm softened above. CORNWALLIS FORMATION 33 CONGLOMERATE, poorly cemented, with sub-rounded clasts SW, dark grey, medium SANDSTONE, extremely weak 52 END OF BOREHOLE AT 18.85m. Standpipe piezometers installed. See BH5-PZ for details.


136	PROJECT N BORE NO:	(0:SI	TE: 14014	
	BOX NO:	METRES TO 3	25 METRES	
		entrance.	Empirica analysis	
8				
			09:1	
		X	Respire	3.00

BH 5_Box 01_00.00-03.00m.jpg

BH 5_Box 02_03.00-05.55m.jpg

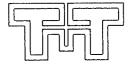
Tonkin & Taylor 27064.001

BORE NO: GOS
BOX NO: 4 OF
FROM 2352 METRES TO 10-55 METRES

BH 5_Box 04_08.35-10.55m.jpg Tonkin & Taylor 27064.001

	BORE NO: BOX NO: FROM 18 55	
	S S S	 A CONTRACTOR OF THE CONTRACTOR
1.9	S. O. O. O. O. O. O. O. O. O. O. O. O. O.	
		12.85 12.45 12.45

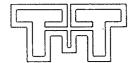
BH 5_Box 05_10.55-12.95m.jpg



BH 5_Box 06_12.95-15.85m.jpg

Tonkin & Taylor 27064.001

BH 5_Box 07_15.85-18.85m_EoB.jpg

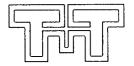


DRILL HOLE LOG

BOREHOLE No: BH6 Hole Location: Spillway

SHEET 1 OF 5

LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION HOLE STARTED: 3/5/10 **CO-ORDINATES** 6472345.08 mN DRILL TYPE: 303CR 2656517.81 mE HOLE FINISHED: 4/5/10 DATUM: Geodetic 49 DIRECTION: 0.00° R.L. GROUND: 106.75 m DRILLED BY: Drill Force ANGLE FROM HORIZ.: -90.00 ° CHECKED: CJL R.L. COLLAR: m LOGGED BY: STMM **ROCK DEFECTS** DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING CORE & CASING ELOG natural (cm) SIGNIFICANT JOINTS, BEDDING, CRUSHED DRILL WATER LOSS (%) CORE BOX PT LOAD / UCS TEST (MPa) CORE LOSS / LIFT (%) TEST SYMBOL DEPTH (m) DATE / DEPTH HARDNESS, STRENGTH, COLOUR, GEOLOGICAL UNIT 8 AND SHEARED ZONES/SEAMS WATER LITHOLOGICAL FEATURES (bedding, cement, Rab foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING WETHOD, ANGLES ARE NORMAL TO CORE AXIS žššž **\$2258** Silty CLAY, dark brown, orange mottles, stiff, moist, low plasticity. Upper 150mm are soft to firm 0.5m: becoming orange brown with some organics PUSH TUBE: Sample only 50% recovered FILL core not logged 1.35m: becoming light grey orange mottles, very soft, wet Clayey SILT, dark brown, very soft, wet, plastic, numerous organic compressed Clayey SILT, brown, soft, moist, plastic, some organics PUSH TUBE: Sample only, 50% recovered. Sample dropped out of tube, core not logged ₹ Clayey SILT, brown, soft, moist, plastic, some organics PUSH TUBE: Sample only, 50% recovered, core not logged 3.5m: becoming light grey with organics Silty SAND, brown grey, with some rootlets, loose, moist 4.35m: shear surfaces at 15° along silty layer, 4.35m: 30mm SILT 30mm thick. PUSH TUBE: Sample only 50% recovered, core not logged. Log Scale 1:25



DRILL HOLE LOG

BOREHOLE No: BH6 Hole Location: Spillway

SHEET 2 OF 5

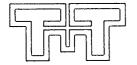
_	OJECT: HUIA WATER TREATMENT PL D-ORDINATES 6472345.08 mN 2656517.81 mE	3 1141	 <u> </u>			DRII DAT	LL TY UM:	PE:	3030 Geo	eodetic 49 HOLE FINISHED: 4/5/10
	RECTION: 0.00 ° IGLE FROM HORIZ.: -90.00 °						GRO COLI			6.75 m DRILLED BY: Drill Force LOGGED BY: STMM CHECKED: CJL
	DESCRIPTION OF CORE									ROCK DEFECTS
GEOLOGICAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	- SW ROCK - SW VEATHERING	"	CORE LOSS	METHOD, CORE & CASING	TEST SYMBOL	GRAPHIC LOG	DEFECT LOG	50 FRACTURE LOG 10 spacing of natural	ANGLES ARE NORMAL TO CORE AXIS
COLLUVIUM	5m: some relict of SILTSTONE, dark grey, brown hue, extremely weak Coarse SAND, orange brown, loose				E	SS1	× × × × × × × × × × × × × × × × × × ×			5.42m: shear surface 25°
	PUSH TUBE: Only 50% recovered. Core not logged HW, orange brown CONGLOMERATE, sub-rounded to sub-angular clasts, extremely weak				14	PTS -	Ž Č X			
ORMATION	7.5m: becoming dense, brown silty SAND 8m: 100mm silty CLAY SAND, with intercalated weak mudstone,				1	7.5- 7.5- SS2 8.0-	X			8m: Shear surface 30° within 100mm silty CLAY layer.
HW/CW CORNWALLIS FORMATION	orange brown HW, brown, medium SANDSTONE, extremely weak				<u> </u>	SS3 8.5-				8.5m: Bedding 30°, polished. 8.65m: Relict joint 40°. 8.8m: Relict joint 40°.
	Scale 1:25				1	9.5-				ROCKLG 27064.001.GPJ 16

TONKIN & TAYLOR LTD DRILL HOLE LOG

BOREHOLE No: BH6 Hole Location: Spillway

SHEET 3 OF 5

	OJECT: HUIA WATER TREATMENT PL	ANT	INVES	TIGA	MOIT	1		-			AUCKLAND		B No: 270	064.0	01			
С	O-ORDINATES 6472345.08 mN 2656517.81 mE						DRIL		PE:	303C	R etic 49	HOLE STARTED						
15	RECTION: 0.00 °								UND	: 106.7		DRILLED BY: Dr						
	IGLE FROM HORIZ.: -90.00 °						R.L.		-			LOGGED BY: ST		CHE	CKI	ED:	CJL	
_	DESCRIPTION OF CORE										ROCK DEFEC	TS						
	ROCK OR SOIL TYPE, WEATHERING,			 		NG NG	.			o #a _	SIGNIFICANT IC	DINTS, BEDDING, CRUSHEI	ח	_			_	
1	HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement,	ROCK WEATHERING	Y E	PT LOAD / UCS TEST (MPa)	CORE LOSS /LIFT (%)	CASI	MBOL (E)	GRAPHIC LOG	DEFECT LOG	FRACTURE LOG spacing of natural fractures (cm)	AND SHEARED			DATE / DEPTH	8	8	DRILL WATER	ORE BOX
	foliation, mineralogy, texture, etc);	ROC!	ROCK	OAD ST @	RE L	RE &	EST SYMBO DEPTH (m)	VPHIC	FECT	CTUR ing of	DEFECT TYPE,	SHAPE, ROUGHNESS,		E/0	RQD (%)	WATER	N SSO	ORE
		Ŋ	S	ᇤ	8 =	C	ES 30	GR	H	FRA Space	APERTURE, INF	ILLING, SPACING		ă			품 기	ľ°
						METHOD, CORE & CASING						ORMAL TO CORE AXIS						
1		\$& ≨ }	\$22E	<u>2</u>	× SS δ	<u>2</u> ≥				85°-	0.05 5-1		ad Ea		ļ			·
ŀ	SANDSTONE, as previous						=				stained.	tical joint 5mm open	ea, re				$\ \ \ $	ğ
١						 =]											96
l]											
I	10.35m: becoming very coarse, dense, wet						=				İ							
I						Г	10.5				1							
l							\exists											
l						F	_									Ì	$\ \ $	96
						ľ	=										Ш	ı
١	11m: 100mm Fe stain						11.0									ļ		1
I	Tim. Toomin Te stam]		/								Ш	١
							=		//	11111	11.2m: 2 relict	joints 50°, spaced 15	0mm.					9:
							=							1				
							11.5—								1			
						F												
I							=							İ			Ш	9
I	11.75m: becoming medium grained]									İ	Ш	
							=								ì			
	Light grey, medium SANDSTONE, weak,			٦			12.0				ļ.						Ш	
	highly fractured at top						=											_
							=		1							ļ	111	9,
						F	=				·							
							12.5—							1		ì	Ш	П
							=		1							1		Ш
	Light grey pink hue, medium					├-	1 =								\vdash	+		9.
	SANDSTONE, weak, highly fractured,] =	1									Ш	
	likely drilling induced						13.0—										Ш	
						F	1 =							İ	8			П
							=										Ш	9
	-					l	=				1							Н
	L					L	13.5-				13.4m: 2x Join smooth, clean.	ts 60° cross-cutting,	planar,			4		$\ $
	SW CONGLOMERATE, weak						=	₩ð.	1		11	0°, irregular, rough, t	ight clean					$\ $
						1] =	Ο×	1		15.011. JUIN 80	, mrogulai, tougil, t	orean	.			$\ \ $	
						۱,	=	ķŎ	\							,		ľ
						F	-	××	4						-			$\ $
							14.0-	ŏ×										
						1	=	××			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00 immografia1	tight al					$\ \ $
						t	1 :	Ö×	/	1	14.2m: Joint 40	0°, irregular, rough, t	ngnt, clean			1		
							=)			[]							
	MW, grey, medium SANDSTONE, very						14.5-	¥.	11/									$\ $
	weak					F	: :	∤ ∭	汉						-	•	$\ \ $	$\ $
							-]	 }}	/	14.75m: Joint	80-90°, irregular, rou	igh, tight.					٩
							}	4	1		clean, core hig	hly fractured all arou	ind.		3/05/2010			
				H	1111	1	15	- :::::	⊪<\/		11			1	2		Ш	



DRILL HOLE LOG

BOREHOLE No: BH6 Hole Location: Spillway

SHEET 4 OF 5

	-ORDINATES 6472345.08 mN				TION				14. 44/	\IIVI/ .	AUCKLAND	JOB No: 270					_
DIR	2656517.81 mE						DATI	UM:		303CR Geode	tic 49	HOLE STARTED: 3/5/10 HOLE FINISHED: 4/5/10 DRILLED BY: Drill Force					
N/	RECTION: 0.00 ° GLE FROM HORIZ.: -90.00 °								JAR:	106.75 m	1111	LOGGED BY: STMM	CHE	CKE	D:	CJL	
	DESCRIPTION OF CORE										ROCK DEFECT	rs .					_
	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	SW ROCK MW WEATHERING	R4 ROCK R3 STRENGTH R1 STRENGTH	PTLOAD/UCS TEST (MPa)	+3 CORE LOSS +30 / LIFT (%)	METHOD, CORE & CASING	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	50 FRACTURE LOG 10 spacing of natural 11 fractures (cm)	AND SHEARED ADEFECT TYPE, S	INTS, BEDDING, CRUSHED ZONES/SEAMS SHAPE, ROUGHNESS, ILLING, SPACING DRMAL TO CORE AXIS	DATE / DEPTH	RaD (%)		DRILL WATER SO LOSS (%)	CORE BOX
	SANDSTONE, as previous 15.5m: becoming coarse					ш	15.5				15.1m: 4x Joint clean, spacing 1	s 20°, planar, smooth, tight, 00-150mm.		0			91.
				,		тт	16.0				15.9m: Joint 80 fractured all rou	°, irregular, rough, highly and.		20			91. 90 \$ xop
						TT	16.5—		K		16.5m: 2x Joint cross-cutting?	s 40°, planar, rough, tight, clea	ın,	15			90
MATION	17m: becoming medium grained			:			17.0—				highly fractured	planar, rough, tight, clean, I drilling induced. 10°, planar, rough, tight, clean.					89
MW CORNWALLIS FORMATION	CORE LOSS, in poorly cemented Sandstone					Т	17.5—				17.23m: Joint 40 veneer.	o', planar, rough, tight, clay		40			81
MW C	CORE LOSS, in poorly cemented Sandstone					TT	18.0		7		18-18.75m: Dri	illing induced fractures.		27			8
	18.6m: loose, wet, uncemented 18.75m: weak for 10mm then uncemented and fine grained	d				T	18.5	/\ 			18.75-19.5m: I	Orilling induced fractures.		2			8
						F	19.0							25			8
	19.55m: becoming coarse, uncemented, almost a conglomerate					П	19.5				19.55m: Beddi	ng ~20°.		0			8

Log Scale 1:25

TONKIN & TAYLOR LTD DRILL HOLE LOG

BOREHOLE No: BH6 Hole Location: Spillway

ROCKLG 27064.001.GPJ

SHEET 5 OF 5

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 DRILL TYPE: 303CR HOLE STARTED: 3/5/10 CO-ORDINATES 6472345.08 mN 2656517.81 mE HOLE FINISHED: 4/5/10 DATUM: Geodetic 49 DRILLED BY: Drill Force DIRECTION: 0.00° R.L. GROUND: 106.75 m LOGGED BY: STMM CHECKED: CJL R.L. COLLAR: m ANGLE FROM HORIZ.: -90.00 ° ROCK DEFECTS DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING, SIGNIFICANT JOINTS, BEDDING, CRUSHED DRILL WATER LOSS (%) CORE BOX RL (m) PT LOAD / UCS TEST (MPa) CORE LOSS / LIFT (%) METHOD, CORE & CASIN DATE / DEPTH HARDNESS, STRENGTH, COLOUR, શ્ AND SHEARED ZONES/SEAMS WATER LITHOLOGICAL FEATURES (bedding, cement, g GEOLOGICAL foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS £\$88 NSK NSK E 20.4m: 100mm layer of SANDSTONE, extremely weak CORNWALLIS FORMATION 21.15m: Bedding ~20°. 21.15m: becoming fine grained Ė 21.7m: Bedding ~20°. 21.7m: becomes coarse 22.2m: Bedding ~20°. Contact sharp, SILTSTONE, extremely END OF BOREHOLE AT 22.5m. Standpipe piezometers installed. See BH6-PZ for details.

	BORE NO:	BUE
	BOX NO:	2 OF
	FROM D 200	METRES TO 1-50 3.0 METRES
1		Construction of the property o
1/	8	St. To
A.	0	0
		5 0 2 VI
i.	1 R	Se Se Se Se Se Se Se Se Se Se Se Se Se S
	and the same of th	
	2 0	

BH 6_Box 01_00.00-03.90m.jpg

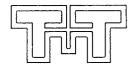
BORE NO: 346 BOX NO: 2 OF FROM 3.900 METRES TO 7.400 METRES	
The state of the s	
Se de la companya della companya della companya de la companya del	

BH 6_Box 02_03.90-07.40m.jpg

BH 6_Box 03_07.40-10.10m.jpg

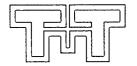
BORE NO: BH6 BOX NO: 4 OF FROM 10-10- METRES TO 13-80- METRES	1 7 3
FROM 10.10 METRES TO 13.80 METRES	

BH 6_Box 04_10.10-13.80m.jpg


BH 6_Box 05_13.80-16.50m.jpg

BH 6_Box 06_16.50-19.50m.jpg

BH 6_Box 07_19.50-22.50m_EoB.jpg

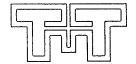


DRILL HOLE LOG

BOREHOLE No: BH7 Hole Location: Bush Next to Creek

SHEET 1 OF 3

PR	OJECT: HUIA WATER TREATMENT PL	ANT	INVES	STIGA	NOIT	1	LOCATIO	N: W	AIMA	, AUCKLAND JOB No.	27064	.00	1			
CC	O-ORDINATES 6472523.43 mN						DRILL TY	PE:								
	2656412.11 mE						DATUM:			detic 49 HOLE FINISHED: 5/5/		t				
	RECTION: 0.00°						R.L. GRO				_		יער	D	C 11	,_
	GLE FROM HORIZ.: -90.00 ° DESCRIPTION OF CORE						R.L. COLI	LAK:	m	LOGGED BY: STMM ROCK DEFECTS	CI	IEC	\\E	D: (UJL	
Н		Г	Ι			(0			I	TOOK BELLEVIO			П	_	-	
틸	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR,	Š	_	S &	ις (THOD, CORE & CASING	5 6 8 8	ဗ္ဂ	FRACTURE LOG spacing of natural	SIGNIFICANT JOINTS, BEDDING, CRUSHED		ξĺ	٦		۳. س	×=
GEOLOGICAL UNIT	LITHOLOGICAL FEATURES (bedding, cement,	ROCK WEATHERING	ROCK	PT LOAD / UCS TEST (MPa)	CORE LOSS / LIFT (%)	= & C,	TEST SYMBOL DEPTH (m) GRAPHIC LOG	DEFECT LOG	of na	E AND SHEARED ZONES/SEAMS		DATE / DEPTH	Rab (%)	WATER	DRILL WATER LOSS (%)	CORE BOX
8	foliation, mineralogy, texture, etc);	EAT R	STRE	1.C	CORE	CORE	EST (SEFE	SACT acing	DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING		ATE	8	*	뛽贸	S 🕿
뎶		>		L .		Ġ.	- "	-	E & ን	A Littoria, an incline, or norms		۱"			_	
$\ $		 ≧≋≧≅	\$55£	l Ձ	- 28 ⁵				850.	ANGLES ARE NORMAL TO CORE AXIS		ł			08E	1
\vdash	Silty CLAY, slightly sandy, soft to firm,	ĦĦ		Ī		Н	<u>×-:</u>					+	_	+	H	20:
	moist, low plasticity, some organic		Ш				_ <u>`</u>						l	- [Ш] :
	fragments. Some white laminations possibly sub-horizontal					OB	_ <u></u>					ļ		1	111	
	F						7		Ш		ļ			1	Ш	
														ĺ	Ш	20.0-
	Silty CLAY, light grey orange mottled, stiff, moist, plastic, numerous Fe stains	HH							1111		l		١		Ш	
	stin, moist, plastic, numerous i e stants					_			Ш	[]				i	Ш	
		Ш				OB		}				1			Ш	-
							<u> </u>	1			Į					
		$\ \ $			HH	\vdash	1.0	1		1m; Strong sub-horizontal to 10° dipping						19,
									$\ \ $	white/orange brown lamination.					Ш	
	Sandy SILT, soft, moist, non-plastic	1]]]]]	1			× ;	1		[]						_
ξ]× · 🖟]								,
COLLUVIUM	_ 	$\ \ $			$\ \ \ $	ОВ	<u> </u> × ×					-				19.0-
띕	1.5m: Silty CLAY, as above					٥	<u>x</u> _	1								
8	1.6m: Fe stain increasing for 200mm							1								
	1.7m: becoming more sandy				$\ \ \ $		<u> </u>	1								
]×					İ			Ш	
	Sandy SILT, light grey orange mottled,	1111	i			┝	2.0		1111							184
	very soft, wet, plastic, some Fe stain						`.`		1111							
		1111					 ×∵	1		11					Ш	Box -
								1								
						OB	x ×	-								18
						ľ		-							$\ \ $	
			$\ \ \ $				‡* ×	1								
	2.75m: becoming grey, some Fe stained		$\ \ \ $				‡î, ×	1								
		$\ \ $					∃ _× ×	-								
\vdash	CLAY, silty in places, very stiff to hard,		$\ \ \ $			\vdash	3.0 ×	1		3m: Bedding 10-15°.						17.5
	moist, plastic		$\ \ \ \ $	1			-	1								
	Some silty-sandy layers 10-15mm thick, moderately dense, few carbonaceous							1								
	fragments					1		1							Ш	
1				İ		OB	3.5	1								117
Ñ								-								
ĮΥ	3.6m: 50mm sandy layer, loose, wet						- -								$\ \ $	
<u>×</u>	3.8m; ripped clasts of black carbonaceous						 	1	$\ \ \ $							
SEC	clayey SILT] *	1		II						
MW CORNWALLIS FORMATION	4m: becoming dark grey, carbonaceous					H	4.0	-		II.						16.5
ΜA	content increases, soft, moist						‡	1								-
Z.	4.1m: 100mm black carbonaceous clay band						🎏	1								
8	4.2m: some ripped sandy clasts			1			‡===	1	$\ \ $							
 ₹						OB OB	1,3**]								1840
					$\ \ $	l°	<u> </u>	-								Bay
1	4.6m: 100mm very soft, wet						-\frac{1}{x}	1								
							- x-	4								
							-_	1								
	Scale 1:25		ШЦ	Ш	1111		5 ×		Ш	<u> </u>	ROCKI	.G 2	1 2706	4.001	.GPJ	16
Log	Scale 1:25			<u></u>	ш	J	1 3 14-	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	ROCKI	.G 2	706	4.001	.GPJ	16



TONKIN & TAYLOR LTD DRILL HOLE LOG

BOREHOLE No: BH7 Hole Location: Bush Next to Creek

SHEET 2 OF 3

	ROJECT: HUIA WATER TREATMENT P D-ORDINATES 6472523.43 mN 2656412.11 mE	LANT	IN\	/ES	TIGA	ATIC	ON	D	RILL	. TYI	N: W PE:	So	nic	_	64.00)1			
	RECTION: 0.00 ° NGLE FROM HORIZ.: -90.00 °							R		RO	UND .AR:	: 12	0.50	LOGGED BY: STMM	Ltd CHE	CKE	ED:	CJL	
	DESCRIPTION OF CORE					_	_	_						ROCK DEFECTS	_				
GEOLOGICAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	SW ROCK SW WEATHERING	1	- R2 STRENGTH	PT LOAD / UCS TEST (MPa)	CORE LOSS	ΞL	METHOD, CORE & CASING TEST SYMBOL	DEPTH (m)	GRAPHIC LOG	DEFECT LOG	-50 FRACTURE LOG	- 5 spacing of natural - 1 fractures (cm)	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS	DATE / DEPTH	RaD (%)	WATER	LSS DRILL WATER LSS (%)	CORE BOX
	4.95m: carbonaceous inclusions Sandy SILT, very stiff, moist, low								<u> </u>	×				5.25m: Bedding 10-15°.			:		-
	plasticity. Interbed 2+3mm thick purple clay, firm, plastic, dipping 10-15°, some green-blue gravel clasts						5	80 5	5.5	`									115.0
!	Clayey SILT, slightly sandy, dark purple grey mottled, firm, moist, high plasticity, some sub-rounded fine gravel inclusions Clasts of dark grey, brown hue fine to medium SANDSTONE, extremely weak within area of SAND							ao G											-0.41 -0.41
ALLIS FORMATION	Silty CLAY, grey orange mottled, with dark grey sandy inclusions, very stiff, moist, plastic							80	7.0	1 * [113.5-
MW CORNWA	Medium SAND, dark grey, with some gravel clasts, medium dense, wet, some clasts of sandstone								8.0										112.5
	Sandy SILT, light grey brown mottled, firm, moist, non-plastic, with sandy inclusions				:			90	8.5	× × × × × ×									112.0
	Silty SAND, light grey, very dense	_						_	9.0	<u>×</u>									111.5
	9.1m: some sandstone inclusions 9.15m: becoming SAND, very loose, wet													9.15m: Fragments of polished surface of unknown orientation.					
	9.4m: becoming very dense							OB	9.5					9.4m: 10-15° parting.					111.0
Log	g Scale 1:25								10					ROCI	(LG	2706	4.00		GPJ

DRILL HOLE LOG

BOREHOLE No: BH7 Hole Location: Bush Next to Creek

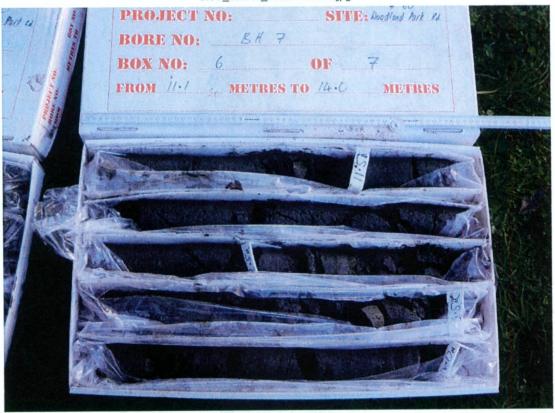
SHEET 3 OF 3

PR	OJECT: HUIA WATER TREATMENT P	LANT IN\	ESTIC	ATIC	N	LOC	ATIO	N: W	AIMA,	AUCKLAND	JOB No: 2706	4.001				_
CC	0-ORDINATES 6472523.43 mN 2656412.11 mE							PE:	Sonic	•	TED: 5/5/10					
DIE	RECTION: 0.00 °					DAT		HND:	Geode 120.50		HED: 5/5/10 /: DCN Drilling l	_td .				-
	IGLE FROM HORIZ.: -90.00 °						COLL			LOGGED BY		HEC	KEI	D: C	JL	3
	DESCRIPTION OF CORE									ROCK DEFECTS						
CAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK WEATHERING ROCK	STRENGTH PT LOAD / UCS	CORE LOSS	HOD, CORE & CASING	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	FRACTURE LOG spacing of natural fractures (cm)	SIGNIFICANT JOINTS, BEDDING, CF AND SHEARED ZONES/SEAMS		DATE / DEPTH	RQD (%)	WATER	LOSS (%)	RE BOX
GEOLOGICAL	(visitori, lillioratogy, tosaro, easily)			ı	THOD, COR	TEST	GRAF	OEF	FRACT spacing fractu	DEFECT TYPE, SHAPE, ROUGHNES APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE A		DATE	ř.	> a	2 2	8
	Grey, medium to coarse SANDSTONE, extremely weak, clasts in sub-angular	NWW HWW HWW	2 E E	13	MET	 - -			826-				-	*	38	l 10.
	10.5m: becoming coarse				TL	10.5							0			10.0-
	11.1m: becoming medium grained				111	11.0							45			109
	Grey, CONGLOMERATE, extremely weak					- 11.5	× 3 × 3 × 4 × 4									109.0-
ALLIS FORMATION	Fine SANDSTONE, with some 10mm				TT.	12.0		// `\		12m: 3x Joints 70°, irregular, i clean, spacing 200mm. 12.5-13m: Highly fractured are			30			108
SW CORNW	thick SILTSTONE layers				11	13.0	× × × × × × × × × × × × × × × × × × ×			joints. 12.6m: Bedding 15°.			0			107.5
						13.5	× × × × × × × ×	N.		13.4m: Bedding 15°.						.07
	Grey, coarse SANDSTONE, very weak	_				14.0	× × × × × ×	1		13.7m: Bedding 20°. 13.7m: Joint 70°, planar, roug discoloured. 14m to EOB: Highly fractured in the			16			106.5
						14.5		たながん		joints.						06.0
Log	END OF BOREHOLE AT 15m. Standpipe piezometers installed. See BH7-PZ for details. Scale 1:25				11.	-		火火火			ROCK	LG 27	064	.001	GPJ	18

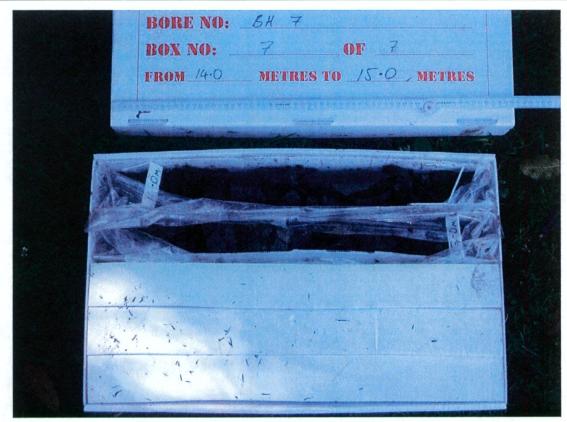
BH 7_Box 01_00.00-02.30m.jpg

BH 7_Box 02_02.30-04.60m.jpg

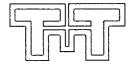
Tonkin & Taylor 27064.001


gq[.m07.80-08.40_80 xo8_7 H8

gqj.m08.80-07.30_10 xo8_7 H8



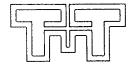
BH 7_Box 05_08.80-11.10m.jpg



BH 7_Box 06_11.10-14.00m.jpg

Tonkin & Taylor 27064.001

BH 7_Box 07_14.00-15.00m_EoB.jpg


DRILL HOLE LOG

BOREHOLE No: BH8 Hole Location: North of Raw Water Aqueduct

SHEET 1 OF 5

PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND JOB No: 27064.001 CO-ORDINATES 6472495. mN DRILL TYPE: Sonic Rig HOLE STARTED: 6/5/10

C	D-ORDINATES 6472495. mN 2656365. mE							LL TYI 'UM:	PE:		nic Rig HOLE STARTED: 6/5/10 sodetic 49 HOLE FINISHED: 7/5/10
ום	RECTION: 0.00 °								UND		4.00 m DRILLED BY: DCN Drilling Ltd
1A	NGLE FROM HORIZ.: -90.00 ° DESCRIPTION OF CORE				<u>-</u>		R.L.	COLI	.AR:	m	LOGGED BY: CJL/STMM CHECKED: CJL ROCK DEFECTS
GEOLOGICAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	LW ROCK SW WEATHERING	R4 ROCK R2 STRENGTH R1	RO PT LOAD / UCS TEST (MPa)	10 CORE LOSS / LIFT (%)	METHOD, CORE & CASING	TEST SYMBOL	GRAPHIC LOG	DEFECT LOG	50 FRACTURE LOG 10 spacing of natural	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS
	Sandy CLAY, orange brown with lighter			 			-			$\dagger\dagger$	111111111111111111111111111111111111111
	and darker mottling, moderate plasticity, rare carbonaceous inclusions, some rare siltstone gravel inclusions (sub-angular, highly weathered, extremely weak)					08	0.5—				123.5-
	1.05m: 200mm zone of gravel inclusions						1.0				*23.0-
			i i i i i i i i i i i i i i i i i i i			008	1.5-				22.5-
	PUSH TUBE: core not logged					F		X			
COLLUVIUM	Clayey, medium to coarse SAND, orange brown mottled, loose, rare carbonaceous inclusions and rare thin (0-3mm) sub-horizontal clay seams					OB	2.5-				
							3.0		عييا	1	3.1m: Light brown clay seam, 3mm, approx.
						08	3.5-				10°. 3.3m: 25mm light brown clay seam, soft with relict carbonaceous materials and limonite staining, 5-10° dipping.
	Clayey SAND, as previous, with many thin (0-5mm) light brown clay seams in a variety of orientations, some dark brown silt seams (5-20mm) also present separating sand units					80	4.0-		ころびどろ		4.0-4.6m: Possible Sheared Zone.
amm	g Scale 1:25						5		いまで		4.8m: 3mm brown clay seam approx. 10° dipping, partly striated and joint polishing.

Log Scale 1:25

TONKIN & TAYLOR LTD


DRILL HOLE LOG

BOREHOLE No: BH8 Hole Location: North of Raw Water Aqueduct

ROCKLG 27064.001.GPJ

SHEET 2 OF 5

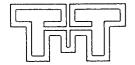
JOB No: 27064.001 PROJECT: HUIA WATER TREATMENT PLANT INVESTIGATION LOCATION: WAIMA, AUCKLAND HOLE STARTED: 6/5/10 CO-ORDINATES 6472495. mN DRILL TYPE: Sonic Rig 2656365. mE HOLE FINISHED: 7/5/10 DATUM: Geodetic 49 DRILLED BY: DCN Drilling Ltd R.L. GROUND: 124.00 m DIRECTION: 0.00° LOGGED BY: CJL/STMM CHECKED: CJL R.L. COLLAR: m ANGLE FROM HORIZ .: -90.00 ° **ROCK DEFECTS** DESCRIPTION OF CORE ROCK OR SOIL TYPE, WEATHERING, METHOD, CORE & CASING SIGNIFICANT JOINTS, BEDDING, CRUSHED DATE / DEPTH HARDNESS, STRENGTH, COLOUR, RQD (%) TEST SYMBO DEFECT LOG AND SHEARED ZONES/SEAMS LITHOLOGICAL FEATURES (bedding, cement, GEOLOGICA foliation, mineralogy, texture, etc...); DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS Clayey, medium to coarse SAND, orange brown, loose, rare light brown clay seams 5.45m: coarse grained with rare fine g gravels 5.7m: 5mm bluish grey clay seam, orientation unknown, very soft Below 5.7m becoming medium to coarse, with rare carbonaceous fragments OB SILT/CLAY, orange brown, very soft, moderate plasticity Medium to coarse SAND, orange brown, dense 6.8m: 5mm light brown clay seam at 45°, with carbonaceous inclusions, very soft 7.3m: Bedding 20°. Below 7.3m: as previous but relict bedding visible in places with 20mm zones of fine sand or silt, bedding orientation approx. OB 20°, silt clay zones along bedding in places up to 5-10mm thick CW/HW CORNWALLIS FORMATION Clayey, medium to coarse SAND, orange brown, dense, some zones of core more clay rich than others В 9.4m: 5mm clay seam 1° dipping at contact, 9.4m: becoming coarse OB O some Fe stain. 9.6m: Clay seam at 45°, 2mm thick, brown to 9.6m: becoming medium coarse black Fe stain. Brown, fine SANDSTONE/SILTSTONE, 9.8m: Bedding 20°. extremely weak

DRILL HOLE LOG

BOREHOLE No: BH8 Hole Location: North of Raw Water Aqueduct

SHEET 3 OF 5

PR	OJECT: HUIA WATER TREATMENT P	LANT	INVES	TIGA	TION	1	LOC	ATIO	N: W	AIN	A, A	AUCKLAND JOE	No: 27064	.00)1			
CO-ORDINATES 6472495. mN 2656365. mE								DRILL TYPE: Sonic Rig HOLE STARTED: 6/5/10 DATUM: Geodetic 49 HOLE FINISHED: 7/5/10										
DIF	RECTION: 0.00 °							GRO	UND:					d				
ΑN	IGLE FROM HORIZ.: -90.00 °						R.L.	COL	LAR:	m		LOGGED BY: CJI	JSTMM CH	ŀΕ	CKE	ED:	CJL	
	DESCRIPTION OF CORE	т	r		ı	Ι				_		ROCK DEFECTS						Г
늘	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR,	2	μ,	cs (a)	13 CORE LOSS -10 / LIFT (%)	ASING	ğ :	g	90	9	(F)	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS		Ę	(%)	_	ER C	l _×
CALL	LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK WEATHERING	ROCK	PTLOAD/UCS TEST (MPa)	CORE LOSS	R & C	TEST SYMBOL	GRAPHIC LOG	DEFECT LOG	FRACTURE LOG	nues (DEFECT TYPE, SHAPE, ROUGHNESS,	ĺ	DATE / DEPTH	RQD (WATER	DRILL WATER	ORE BO
GEOLOGICAL UNIT		, W	_ [PTC	8 <	Ö.	TES F	88	DEF	FRAC	fract	APERTURE, INFILLING, SPACING		DAT	"		מא ב	l ⁸
삥		>>>>				타큐						ANGLES ARE NORMAL TO CORE AXIS					w 0 w	
	SANDSTONE, as previous	58 £ £	\$ 55 Z E	<u> </u>	1111	<u> </u>		××		85	<u> </u>	New York			\vdash		K1818	14.0
	orniborona, ao provincia						-	××		Ш	$\ \ $:
1							=	×.×										:
	Clayey, medium to coarse SAND, orange brown, dense, some zones of core more					1	=											
	clay rich than others					8	10.5				Ш							113.5-
						1	-				Ш							
						ļ				Ш								13.0-
					Ш	Γ	-											3, 5 2, 2
] [}	Ш								ă.
							:		1	Ш	Ш							
	,					8	11.5-			Ш								12.5-
	11.6m: becoming loose to medium dense									$\ \ $	Ш					!		
	11.0m. becoming 10000 to measure deliber						:	: ()			Ш							
	11.82m: 10mm brown CLAY seam, soft,								1	$\ \ $	Ш					Ì		
NO	moist, plastic. Breaking in sub-horizontal laminae, not polished	_/		8	HH	╀	12.0-					12m: Joint 80°, planar, smooth, tight,	Fe stain.		1	İ	Ш	112.0
IATI	Brown, medium SANDSTONE, extremely weak, some sub-rounded clasts	,				İ	:	-	1			,					$\ \ $	
NWALLIS FORMATION	Trout, some suc residue visus					ļ٤		3	١ ا						ļ			
IS F						1		3		Ш								
ALI						-	12.5-	-		!!							Ш	111.5
RNA	12.6m: becoming coarse, moist, disaggregated to SAND					Ì		3		Ш	Н							
CW/HW COR	disaggregated to SAND							3		Ш								
//HW								┧		\prod					1		Ш	
ઈ						H	13.0-]							ŀ			
	13.2m: becoming medium SANDSTONE]								١	Ш	11
	extremely weak	'						٠										Ц
	L	_				\coprod	13.5			\parallel								10.5
	CONGLOMERATE, wet, recovered as medium dense, coarse SAND. Clasts are							`∂		Ш					1		$\ \cdot\ $	
	sub-rounded to sub-angular, white, brown and green in colour							\sqrt{E}	7	\parallel							$\ \ $	
	and green in colour							ΧE										
						ļ	14.0	 	7									10.0
								₹;									$\ \ $	_
								``¢										Box
	Coarse SANDSTONE, with up to 50mm long fragments of coarse sandstone,							4										
	extremely weak				M	₩-	14.5	1										109.
						$\ \ $		1			$\ \ $							
							=	∃										$\ \cdot\ $
								3			$\ \ $							
Ļ	g Scale 1:25			Щ	Щ	ш	15	1:::::	::1	ш	Ш	1	ROCK	LG	270	64.00	01.GF	187



DRILL HOLE LOG

BOREHOLE No: BH8 Hole Location: North of Raw Water Aqueduct

SHEET 4 OF 5

	OJECT: HUIA WATER TREATMENT PL	ANT	INVES	TIGA	MOIT					AUCKLAND	JOB No: 2706	64.00	1		—	
Ю	O-ORDINATES 6472495. mN 2656365. mE						DRILL T		Sonic Geode	3	STARTED: 6/5/10 FINISHED: 7/5/10					
)IF	RECTION: 0.00 °						R.L. GF				ED BY: DCN Drilling	Ltd				
	IGLE FROM HORIZ.: -90.00 °						R.L. CC				SED BY: CJL/STMM		CKE	D: C	JL	
_	DESCRIPTION OF CORE				_					ROCK DEFECTS						_
	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	ROCK WEATHERING	ROCK STRENGTH	PT LOAD / UCS TEST (MPa)	CORE LOSS / LIFT (%)	뒫	TEST SYMBOL DEPTH (m)	DEFECT LOG	FRACTURE LOG spacing of natural fractures (cm)	SIGNIFICANT JOINTS, BED AND SHEARED ZONES/SE DEFECT TYPE, SHAPE, RC APERTURE, INFILLING, SP ANGLES ARE NORMAL TO	AMS DUGHNESS, PACING	DATE / DEPTH	RQD (%)	WATER DRILL WATER	(%) SSO1	CORE BOX
		. 38§≩	\$225 \$255	& •	~ 58	8 ₹			85.2	ANGLES ARE NORMAL TO	- CONE AND			KI T	յ Ցե	109.
	Medium SAND, dense, moist Coarse SANDSTONE, extremely weak, clasts are from sub-angular to sub-rounded					F	15.5			15.6m: Joint 30°, plana						108.
IS FUNDING LICE	16.2m: softened and becoming wet, medium SANDSTONE, with some sub-rounded clasts up to 10mm size 16.6m: 200mm medium SANDSTONE,					TT	16.5			16.2m: 10mm Fe staine	d band, 10° dipping.		40			105
CW/HW CORNWALLIS FORMATION	extremely weak					П	17.0			17.1m: Bedding 10-20°) .		20			10
	17.1m: becoming CONGLOMERATE, recovered as dense, coarse SAND, moist to wet					F	17.5						0			10
MATION	Grey, brown hue CONGLOMERATE, very weak 19m: recovered only few fragments of					П	18.5			18.5m: 100mm highly planar, rough, Fe stains	fractured along Joint 80° ed.	7	100			ľ
MW COKNWALLIS FORMATION	conglomerate CORE LOSS from 19.5 to 20m					Ħ	19.5						0			li li
	Scale 1:25					F	20				ROC	KLG :	27064	.001.C	3PJ	18

DRILL HOLE LOG

BOREHOLE No: BH8 Hole Location: North of Raw Water Aqueduct

SHEET 5 OF 5

	O-ORDINATES 6472495. mN 2656365. mE RECTION: 0.00°			71107		•	DRIL DATI	L TY JM:	PE:	Sonic Geode	Rig HOLE STARTED: 6 tic 49 HOLE FINISHED: 7	/5/10	01			
	IGLE FROM HORIZ.: -90.00 °						R.L.			m	LOGGED BY: CJL/S		CKE	D: (CJL	
_	DESCRIPTION OF CORE	1	Ι			Г					ROCK DEFECTS	1	П	Т		<u> </u>
GEOLOGICAL UNIT	ROCK OR SOIL TYPE, WEATHERING, HARDNESS, STRENGTH, COLOUR, LITHOLOGICAL FEATURES (bedding, cement, foliation, mineralogy, texture, etc);	- SW ROCK - SW WEATHERING	- R4 ROCK - R2 STRENGTH - R1	PT LOAD / UCS TEST (MPa)	10 CORE LOSS 10 / LIFT (%)	물	TEST SYMBOL DEPTH (m)	GRAPHIC LOG	DEFECT LOG	5 FRACTURE LOG 10 spacing of natural 5 fractures (cm)	SIGNIFICANT JOINTS, BEDDING, CRUSHED AND SHEARED ZONES/SEAMS DEFECT TYPE, SHAPE, ROUGHNESS, APERTURE, INFILLING, SPACING ANGLES ARE NORMAL TO CORE AXIS	DATE / DEPTH	RQD (%)	-	DRILL WATER	
MW CORNWALLIS	MW, grey with brown hue, coarse SANDSTONE, very weak 20.5m: becoming a CONGLOMERATE SW CONGLOMERATE, grey,					F	20.5	×, ×,			20.5m: 30° contact, heavy Fe stain.		17			103.5-
MAIION	sub-rounded to sub-angular clasts, very weak					II.	21.0						70			103.0-
SW CORNWALLIS FORMATION	Sharp contact with dark grey SILTSTONE, very weak, 50mm thick Sharp contact with grey, fine SANDSTONE, very weak	K					-	O × · · · · · · · · · · · · · · · · · ·			21.55m: Bedding 22°. 21.6m: Bedding 22°.					102.5
S	22.2m: becoming medium grained					F	22.0				22.1m: Disk breaking. 22.15m: Carbonaceous band, dipping 2 22.25m: Carbonaceous band, dipping 2	0°. 0°.	55			8 xog
	END OF BOREHOLE AT 22.5m. Standpipe piezometers installed. See BH8-PZ for details.						23.0—									100.

BH 8_Box 01_00.00-02.50m.jpg

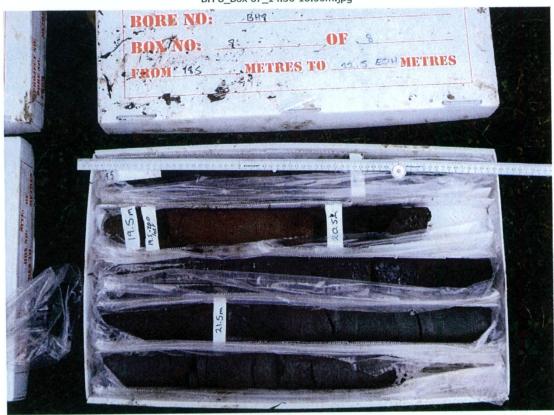
BH 8_Box 02_02.50-04.90m.jpg

Tonkin & Taylor 27064.001

BH 8_Box 03_04.90-07.00m.jpg

BH 8_Box 04_07.00-09.10m.jpg

Tonkin & Taylor 27064.001


BH 8_Box 05_09.10-11.20m.jpg

BH 8_Box 06_11.20-14.30m.jpg

BH 8_Box 07_14.30-18.50m.jpg

BH 8_Box 08_18.50-22.50m_EoB.jpg

Tonkin & Taylor 27064.001

Appendix C: Piezometer and groundwater data

Table 3 - Summary of piezometer and diver installations

Borehole	Piezometer	Piezometer screen	Piezometer filter	Diver depth
BH 1	Piezometer 1	8.0-10.0 m	7.0-11.0 m	9.3 m
	Piezometer 2	21.5-24.5 m	20.5-25.0 m	Not installed
BH 2	Piezometer 1	7.0-8.5 m	6.0-9.5 m	Not installed
	Piezometer 2	19.0-21.0 m	18.0-21.0 m	Not installed
BH 3	Piezometer 1	5.5-7.0 m	4.5-8.0 m	Not installed
	Piezometer 2	21.5-24.5 m	20.5-24.85 m	23.3 m
BH 4	Piezometer 1	7.0-10.0 m	6.0-11.0 m	Not installed
BH 5	Piezometer 1	4.0-7.0 m	3.0-8.0 m	5.3 m
	Piezometer 2	15.5-18.5 m	14.5-18.85 m	Not installed
BH 6	Piezometer 1	9.0-12.0 m	8.0-13.0 m	10.7 m
	Piezometer 2	19.5-22.5 m	18.5-22.5 m	Not installed
BH 7	Piezometer 1	8.0-10.0 m	7.5-10.5 m	Not installed
	Piezometer 2	13.0-15.0 m	12.5-15.0 m	Not installed
BH 8	Piezometer 1	4.5-6.5 m	3.5-7.5 m	Not installed
	Piezometer 2	17.5-19.5 m	16.5-20.5 m	Not installed

Office: AVCKL Computed: STMM 16/04/2010 Project: WC HVIA SI 阮 Tonkin & Taylor job No: 27064-001 Checked: 20 File: Revised: 20 Description: BH 1 - NESTED PIEZOMETERS Sheet No. Checked: 20 G.L. BENTONITE _ 7 00 m SAND 7.50 m 8.00% FILTER SCREEN 10.00m _10.50 m SAWD 11-00 m BENTONITE 14.00 m 0 GRAVEL 0 __ 17 - 50 m BENTONITE _ 20·50 W SAND _ 21.00 m 21-50m_ FILTER SCREEN 0 300 24.50 m 24.50m

Computed: STMM 10/05/2010 Project: WC NUIA SI Office: AUCKL 冗记 Tonkin & Taylor Job No: Checked: 24064-001 Description: BH 2 - NESTED PIEZOMETERS File: Revised: 20 Checked: Sheet No. 20 0.00 BENTONITE

_ 6-00

3.50

___ 12.50

_ 15.00

c 0.81

_ 18-50

21-00

SAND

FILTER

SAND

Ð

to.

BENTONITE

GRAVEL

BENTONITE

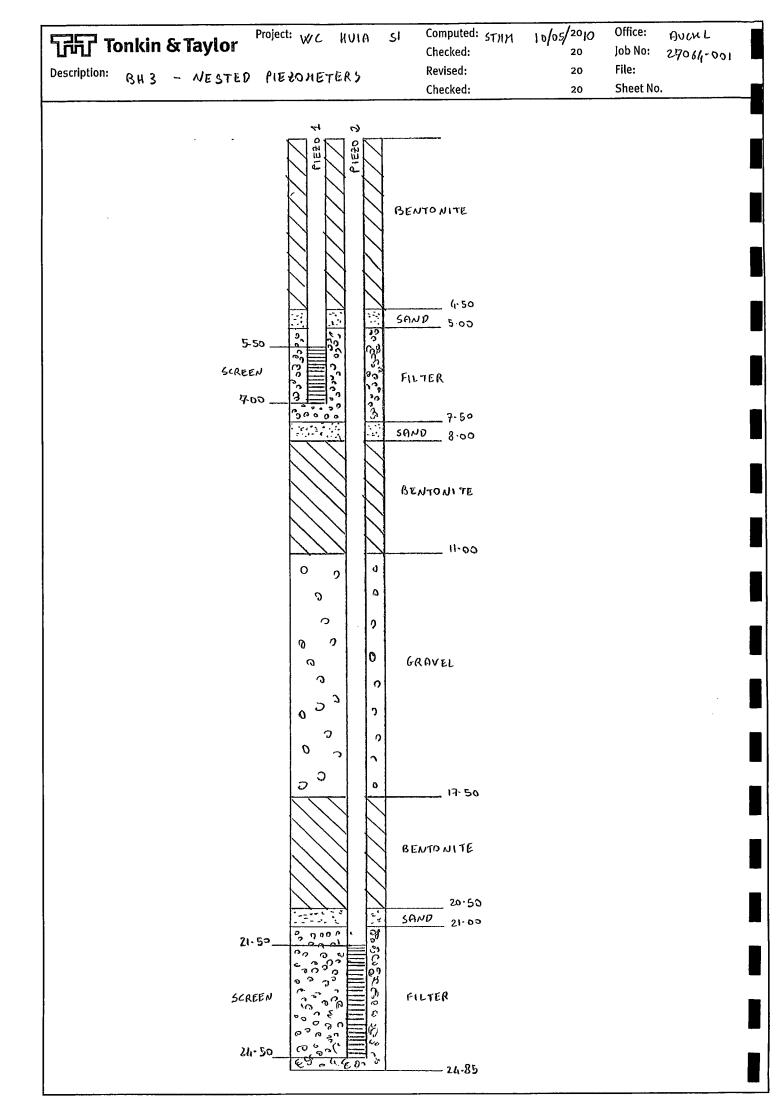
SAND

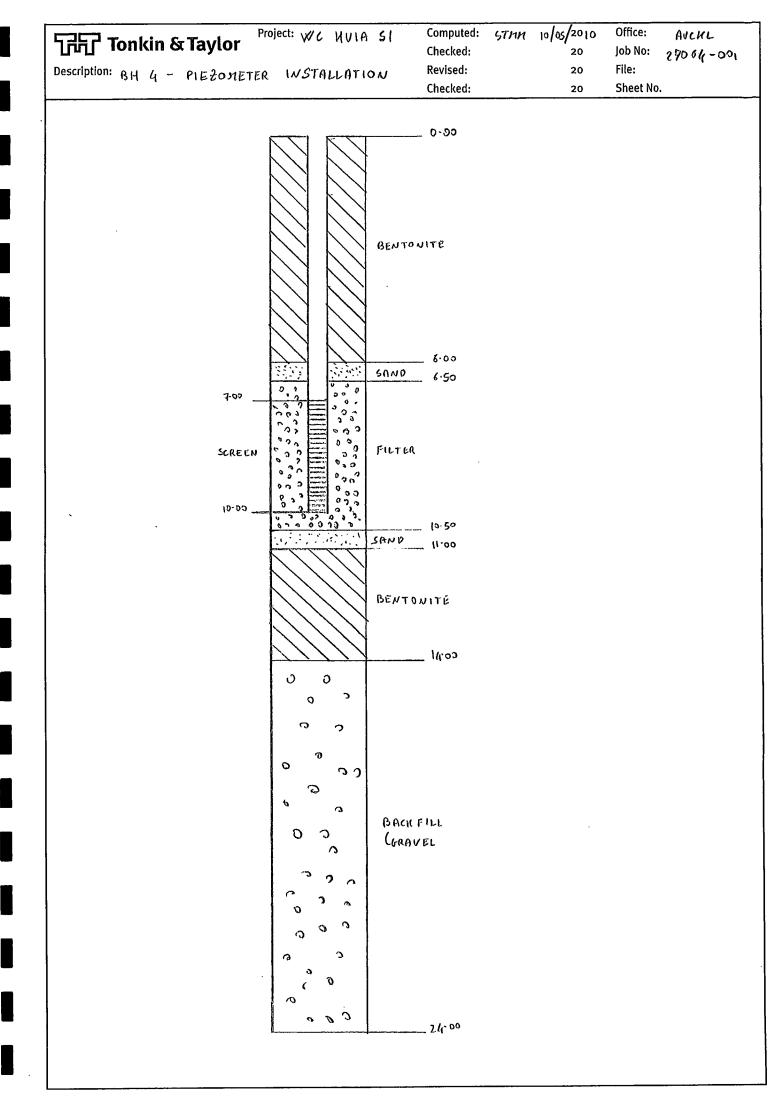
FILTER

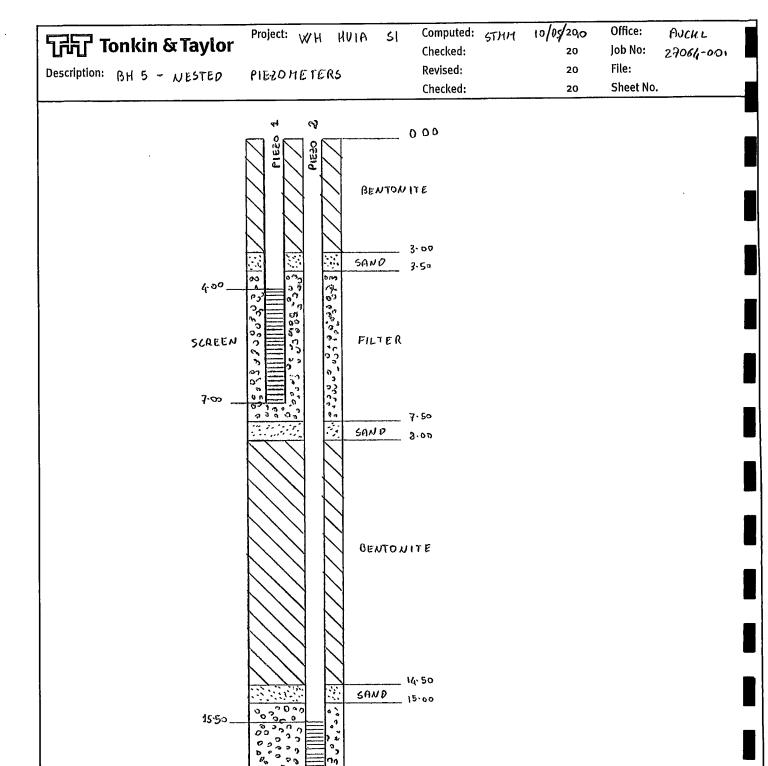
7.00

8.50_

19-00


SCREEN

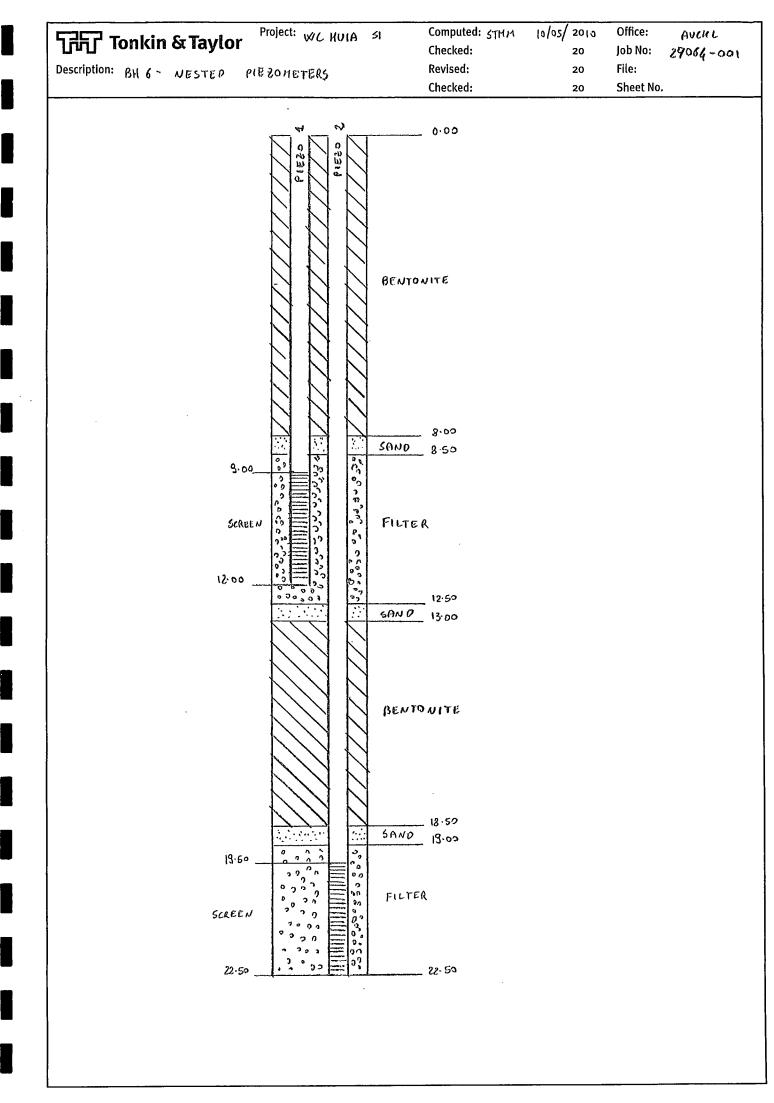

21.00

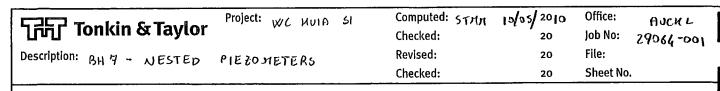

0

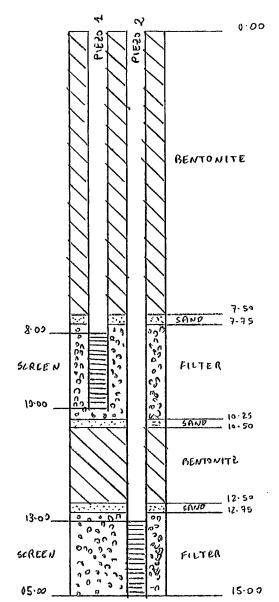
O 5

Screen

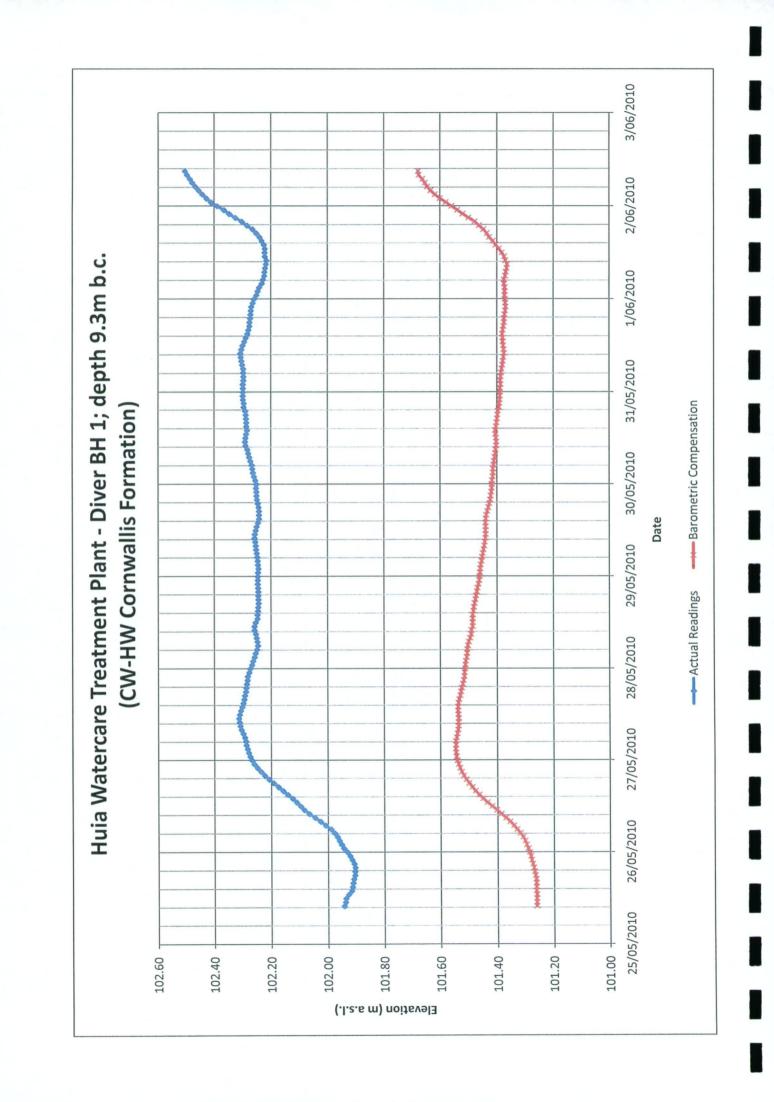
FILTER

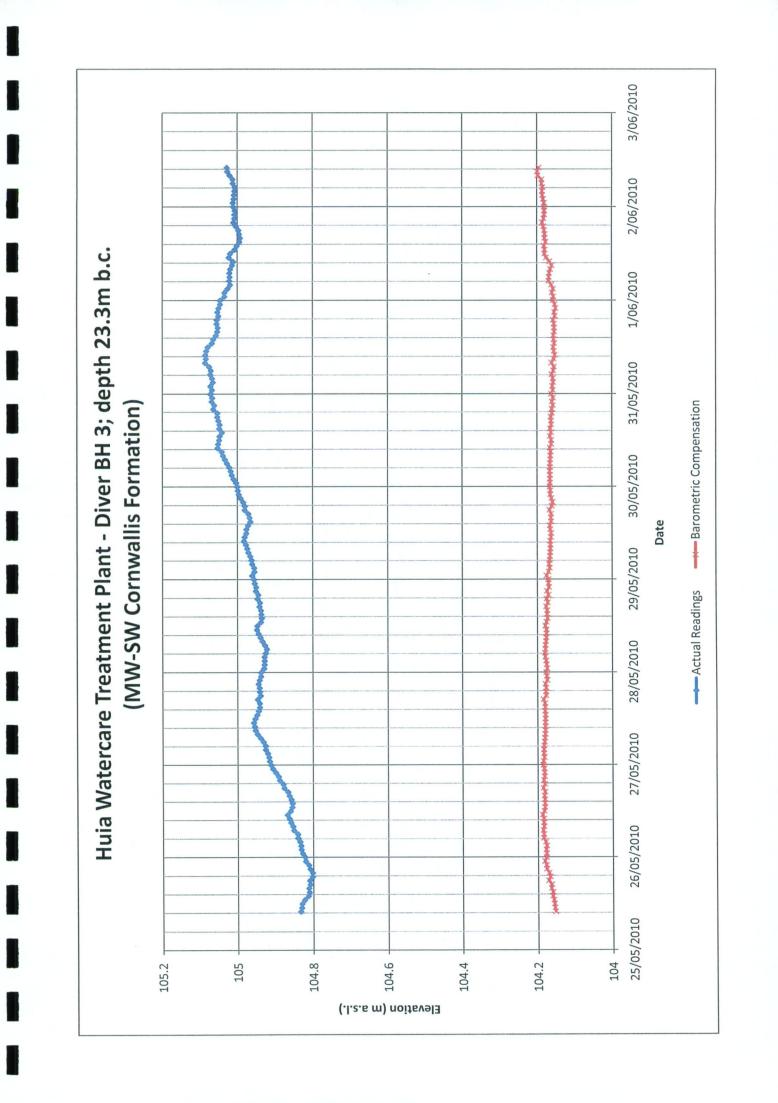

1885

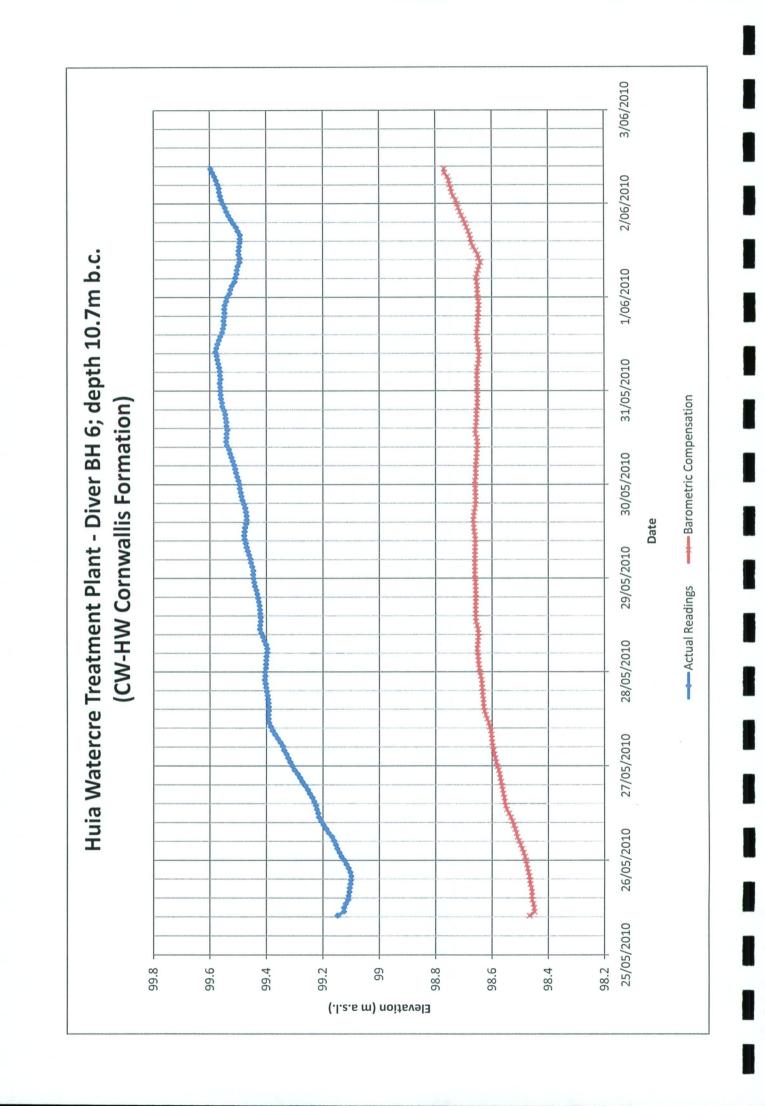

15.50_

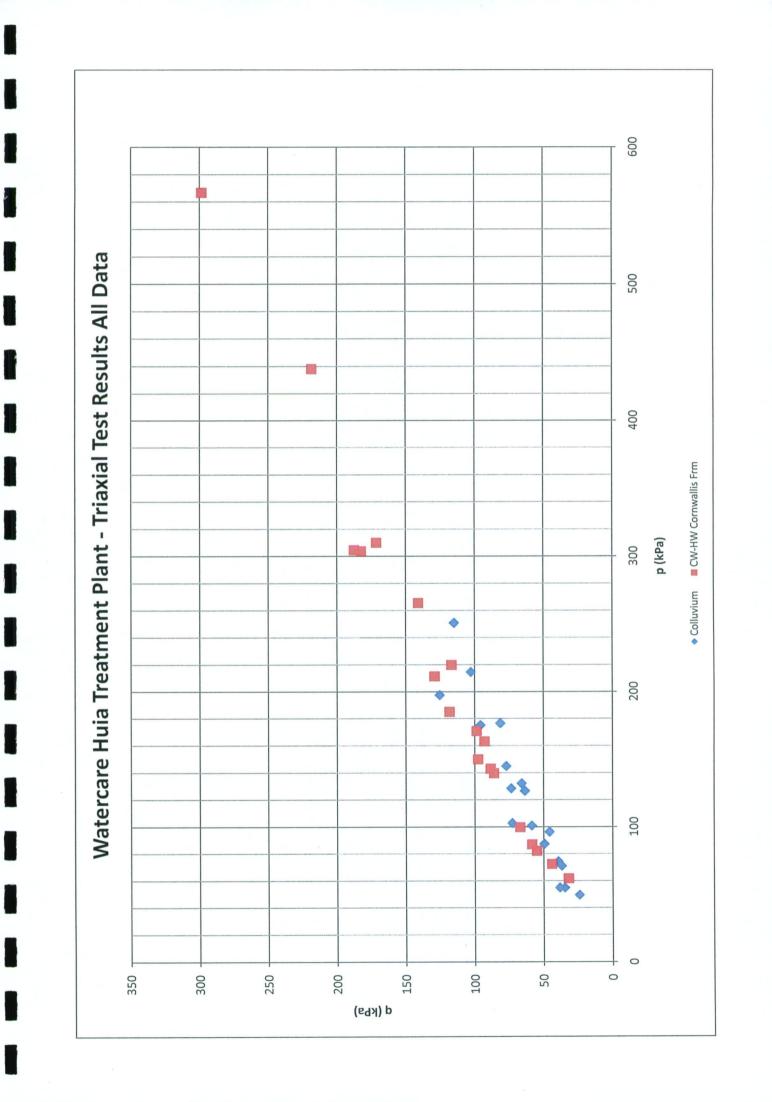

SCREEN

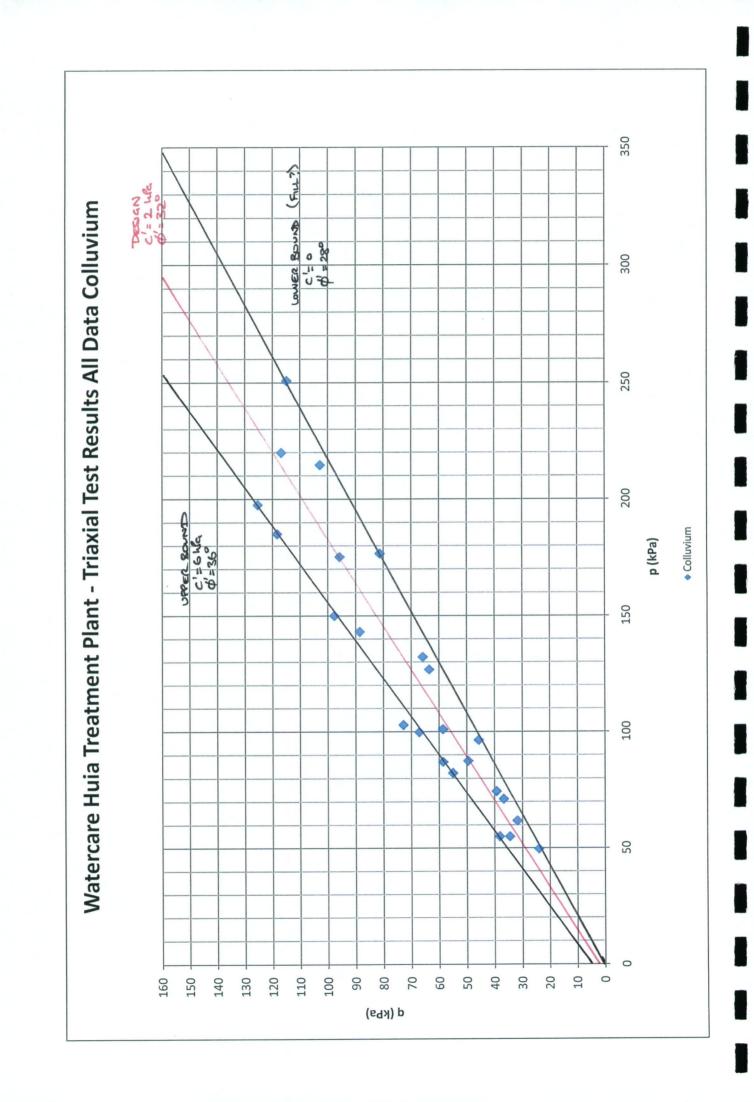
18.50

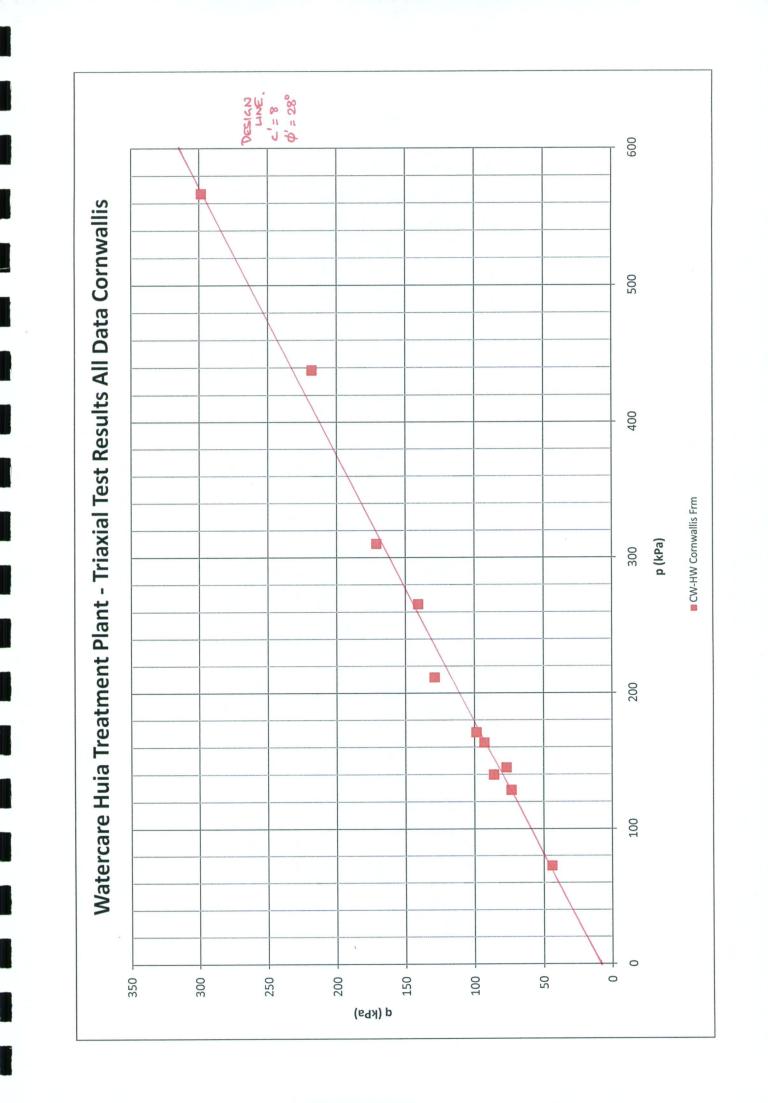

1000






Project: WC MUIA 51 Computed: 5TM1 10/05/2010 Office: **记忆 Tonkin & Taylor** AUCUL Job No: 27064-001 Checked: 20 Description: GH 8 - NESTED Revised: 20 File: PIEZO METERS Checked: 20 Sheet No. S CO.0 BENTONITÉ 3.50 SAND 4:00 4.50 _ SCREEN FILTER 6.50 ... 7.00 SAND 7.50 BENTONITE - 16.50 SAND CC-F1 _ 17-50 SCREEN FILTER 19 50. SAND BACKFILL (GRAVE) ____ 22.50





Appendix D: Laboratory Testing Results

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: P13 B

Form Date.: Sep 2001

Plate No.:

Your Job No.: 27064.001

Site:

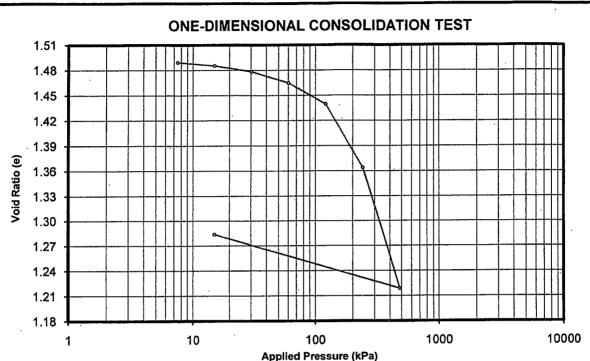
Huia Watercare Plant, Titirangi

Our Job No.: 615300.000

BH No.:

BH2

Sample No.:


PT1

of

Page

Depth: 3.35-3.40 (m)

Test Method Used: NZS 4402:1986 Test 7.1 One-Dimensional Consolidation

		Void		Coefficient of	Coefficient of Volume
Pressure		Ratio	Pressure Increment	Consolidation	Compressibility
(kPa)		(e)	(kPa)	Cv (m²/yr)	Mv (m²/MN)
As received	0	1.493			
Preload	7.5	1.489	0 to 7.5	NA	0.22
	15.1	1.485	7.5 to 15.1	23	0.21
	30.2	1.478	15.1 to 30.2	20	0.19
	60.3	1.465	30.2 to 60.3	17	0.18
	121	1.440	60.3 to 121	13	0.17
	241	1.364	121 to 241	6.3	0.26
···	483	1.219	241 to 483	3.6	0.25
Unload	15.1	1.284	483 to 15.1	NA	NA

Sample History: Undisturbed core trimmed at NWC. SQR of time fitting method used.

Description: -

clayey SILT with minor sand, soft to firm, light greenish grey with light yellowish brown, medium-high

plasticity, slightly dilatant.

Initial Dry Density (t/m³):

1.06

Initial Water Content:

55.0%

Solid Density (t/m³):

2.65

(Assumed)

Initial Saturation:

98%

Temperature During Testing:

 $Max = 22 \, {}^{0}C$ $Min = 21 \, {}^{0}C$

Remarks:

The calculations of void ratio are affected by the solid density value. We have assumed a value of

Sample description is not IANZ endorsed.

Entered by: 57

Date: 25 10 Checked by:

SJA

25/5/10 Date:

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: P13 B

Form Date.: Sep 2001

File P-NWorking Materia/615300 000/BH4_PTZ_4.75-4.80m_Consolute

Plate No.:

Page

of

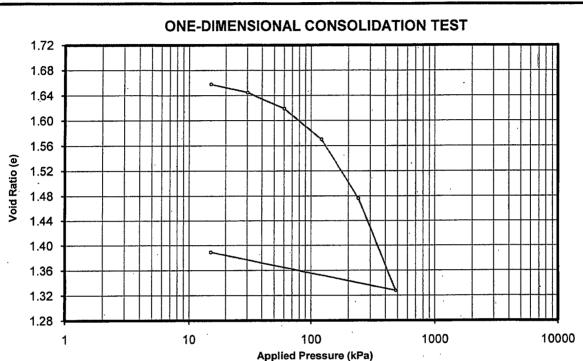
Your Job No.: 27064.001

Site:

Huia Watercare Plant, Titirangi

Our Job No.: 615300.000

BH No.:


BH4

Sample No.:

PT2

Depth: 4.70-4.75 (m)

Test Method Used: NZS 4402:1986 Test 7.1 One-Dimensional Consolidation

Pressure (kPa)		Void Ratio (e)	Pressure Increment (kPa)	Coefficient of Consolidation Cv (m²/yr)	Coefficient of Volume Compressibility Mv (m²/MN)
As received	0	1.671			
Preload	15.1	1.658	0 to 15.1	NA	0.34
	30.2	1.645	15.1 to 30.2	27	0.33
	60.3	1.619	30.2 to 60.3	26	0.32
	121	1.570	60.3 to 121	22 .	0.31
	241	1.476	121 to 241	20	0.30
	483	1.328	241 to 483	18	0.25
Unload	15.1	1.389	483 to 15.1	NA	NA

Sample History: Undisturbed core trimmed at NWC. SQR of time fitting method used.

Description: sandy SILT with trace of clay, soft, light greenish grey, low plasticity, dilatant.

Initial Dry Density (t/m³):

0.99

Initial Water Content:

61.6%

Solid Density (t/m³):

2.65

(Assumed)

Initial Saturation:

98%

Temperature During Testing:

Max = 22 °C Min = 21 °C

Remarks:

The calculations of void ratio are affected by the solid density value. We have assumed a value of

2.65 t/m3.

Sample description is not IANZ endorsed.

Entered by: 57

Date: 25 5 10

Checked by: NJRA

Date: 05/5/10

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: P13 B

Form Date.: Sep 2001

Plate No.:

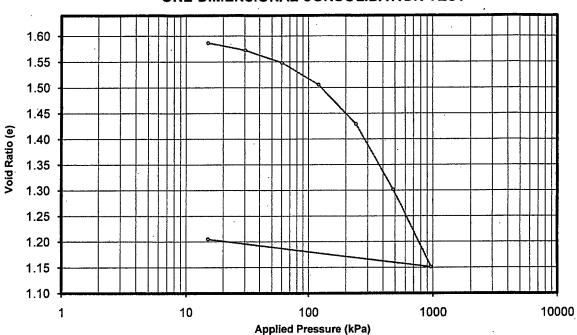
Page of Your Job No.: 27064.001

Huia Watercare Plant, Titirangi

Our Job No.: 615300.000

Site: BH No.:

BH4


Sample No.:

PT3

Depth: 7.85-7.90 (m)

Test Method Used: NZS 4402:1986 Test 7.1 One-Dimensional Consolidation

ONE-DIMENSIONAL CONSOLIDATION TEST

Pressure (kPa)		Void Ratio (e)	Pressure Increment (kPa)	Coefficient of Consolidation Cv (m ² /yr)	Coefficient of Volume Compressibility Mv (m²/MN)
As received	0	1.602			
Preload	15.1	1.587	0 to 15.1	. NA	0.39
	30.2	1.572	15.1 to 30.2	47	0.36
	60.3	1.548	30.2 to 60.3	35	0.31
	121	1.506	60.3 to 121	30	0.28
	241	1.429	121 to 241	27	0.25
	483	1.302	241 to 483	22	0.22
	966	1.151	483 to 966	20	0.14
Unload	15.1	1.205	966 to 15.1	NA	NA

Sample History: Undisturbed core trimmed at NWC. SQR of time fitting method used.

silty SAND with trace of clay, loosely packed, light greenish grey with light yellowish orange brown. Description:

Initial Dry Density (t/m³):

1.02

Initial Water Content:

58.8%

Solid Density (t/m³):

2.65

(Assumed)

Initial Saturation:

97%

Temperature During Testing:

Max = 22 ⁰C Min = 21 °C

Remarks:

The calculations of void ratio are affected by the solid density value. We have assumed a value of

2.65 t/m³.

Sample description is not IANZ endorsed.

Entered by: 57

Date:

Checked by:

WRA

Date: 25/5/12

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: P13 B

Form Date.: Sep 2001

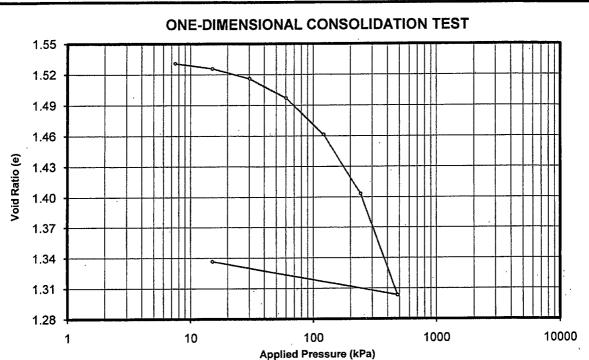
Plate No.:

Your Job No.: 27064.001

Site:

Huia Watercare Plant, Titirangi

Our Job No.: 615300.000


BH No.:

BH5

Sample No.:

Depth: 2.85-2.90 (m)

Test Method Used: NZS 4402:1986 Test 7.1 One-Dimensional Consolidation

Page

of

PT1

Pressure (kPa)	·	Void Ratio (e)	Pressure Increment (kPa)	Coefficient of Consolidation Cv (m²/yr)	Coefficient of Volume Compressibility Mv (m²/MN)
As received	0	1.536			
Preload	7.5	1.531	0 to 7.5	NA	0.28
	15.1	1.526	7.5 to 15.1	25	0.27
	30.2	1.516	15.1 to 30.2	24	. 0.26
	60.3	1.497	30.2 to 60.3	23	0.25
	121	1.461	60.3 to 121	21	0.24
	241	1.403	121 to 241	19	0.20
	483	1.303	241 to 483	17	0.17
Unload	15.1	1.337	483 to 15.1	NA	NA

Sample History: Undisturbed core trimmed at NWC. SQR of time fitting method used.

(Assumed)

Description:

clayey SILT with some sand, soft to firm, light brown, mottled black, medium-high plasticity, dilatant.

Initial Dry Density (t/m³):

1.04

Initial Water Content:

56.4%

Date:

Solid Density (t/m³):

2.65

Initial Saturation:

97%

Temperature During Testing:

Min = 21 °C Max = 22 °C

Remarks:

The calculations of void ratio are affected by the solid density value. We have assumed a value of

2.65 t/m3.

Sample description is not IANZ endorsed.

Entered by: 57

Date: 25|5|10

Checked by: MIRIA

25/5/10

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: P13 B

Form Date.: Sep 2001

Plate No.:

of

Your Job No.: 27064.001

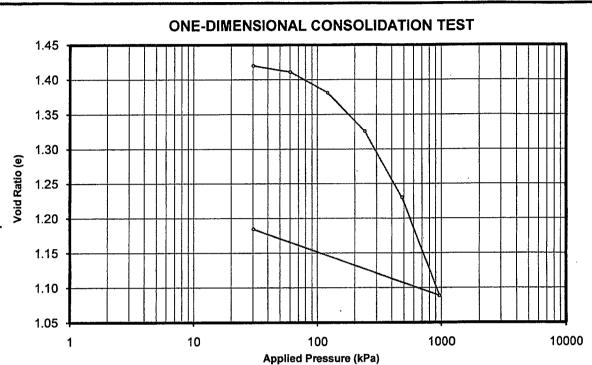
Site:

Huia Watercare Plant, Titirangi

Our Job No.: 615300.000

BH No.:

BH6


Sample No.:

PT2

Page

Depth: 2.60-2.65 (m)

Test Method Used: NZS 4402:1986 Test 7.1 One-Dimensional Consolidation

Pressure (kPa)		Void Ratio (e)	Pressure Increment (kPa)	Coefficient of Consolidation Cv (m²/yr)	Coefficient of Volume Compressibility Mv (m²/MN)
As received	0	1.431	(κι α)	<u> </u>	
Preload	30.2	1.420	0 to 30.2	NA	0.14
	60.3	1.411	30.2 to 60.3	2.1	0.12
	121	1.381	60.3 to 121	1.8	0.20
	241	1.326	121 to 241	0.96	0.19
	483	1.230	241 to 483	0.78	0.17
	966	1.089	483 to 966	0.70	0.13
Unload	30.2	1.184	966 to 30.2	NA ·	NA

Sample History: Undisturbed core trimmed at NWC. SQR of time fitting method used.

Description:

clayey SILT with trace of sand, firm to stiff, orange brown with light greenish grey, mottled black, high

plasticity, slightly dilatant.

Initial Dry Density (t/m³):

1.09

Initial Water Content:

52.9%

Date: 25/5/(p)

Solid Density (t/m³):

2.65

(Assumed)

Initial Saturation:

98%

Temperature During Testing:

Max = 22 °C Min = 21 °C

Remarks:

The calculations of void ratio are affected by the solid density value. We have assumed a value of

2.65 t/m3.

Sample description is not IANZ endorsed.

Date: >\$|\$|10 Checked by: MUIRIA Entered by: \$7

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: P13 B

Form Date.: Sep 2001

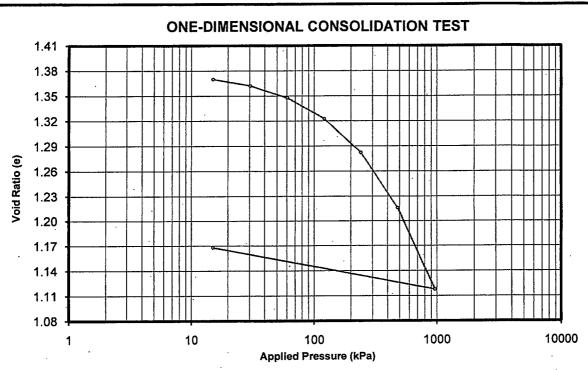
Plate No.:

Your Job No.: 27064.001

Site:

Huia Watercare Plant, Titirangi

Our Job No.: 615300.000


BH No.:

BH6

Depth: 6.90-6.95 (m)

Test Method Used: NZS 4402:1986 Test 7.1 One-Dimensional Consolidation

Sample No.:

Page

of

PT5

Pressure (kPa)		Void Ratio (e)	Pressure Increment (kPa)	Coefficient of Consolidation Cv (m²/yr)	Coefficient of Volume Compressibility Mv (m²/MN)
As received	0	1.378			
Preload	15.1	1.370	0 to 15.1	NA	0.22
	30.2	1.362	15.1 to 30.2	47	0.21
	60.3	1.348	30.2 to 60.3	43	0.20
	121	1.323	60.3 to 121	38	0.18
·	241	1.282	121 to 241	30	0.14
	483	1.216	241 to 483	28	0.12
	966	1.118	483 to 966	24	0.092
Unload	15.1	1.168	966 to 15.1	NA	NA

Sample History: Undisturbed core trimmed at NWC. SQR of time fitting method used.

Description:

silty SAND with a few moderately weathered sand sized clasts of grey SILTSTONE and trace of clay,

loosely packed, light greenish grey with orange brown.

Initial Dry Density (t/m³):

1.11

Initial Water Content:

50.4%

Solid Density (t/m3):

(Assumed) 2.65

Initial Saturation:

97%

Temperature During Testing:

Max = 22 °C Min = 21 °C

Remarks:

The calculations of void ratio are affected by the solid density value. We have assumed a value of

2.65 t/m3.

Sample description is not IANZ endorsed.

Entered by: 57

Date: 25/5/10

Checked by:

MURA

Date: 25/5/10

p. +64 9 356 3510

w. www.geotechnics.co.nz

TP1 Form No.: Form Date: July 2003

:\Geotechnics\Projects\815300\815300.001\W

Plate No.:

Site:

Huia Watercare Plant, Titirangi

Your Ref No.: 27064.001

Page of

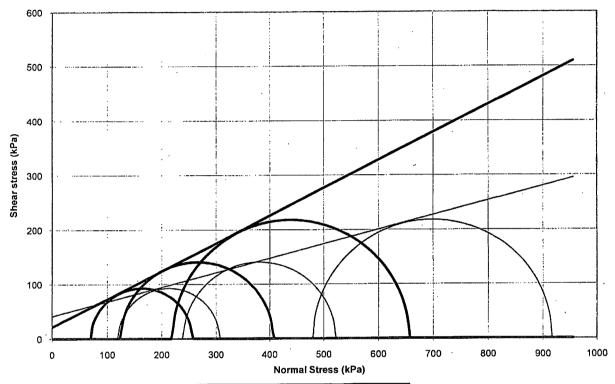
Job No.: 615300.001

Test pit/Bh No.: BH1

Sample No.: PT1

Depth:

6.25 -- 6.37 (m)


Test method used: BS1377:Part 8:1990:Clause 5 Saturation

BS1377:Part 8:1990:Clause 6 Consolidation

BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Effective Stress Total Stress

Initial Sample Height:	115.20	mm	Initial Water Content:	47.1	%
Initial Sample Diameter:	53.89	mm	Initial Bulk Density:	1.73	t/m³
Initial B Value:		%	Initial Dry Density:	1.18	t/m³
B Value before Consolidation:	96	%	Final Water Content:	43.4	%

	Consolidation Stage				Faile	ure Values		
	Cell Pressure (kPa)	Back Pressure (kPa)	Eff. Consol. Stress	Deviator Stress (kPa)	Pore Pressure Change During Shearing δω(kPa)	Stress	Principal s (kPa) Minor σ3'	Vertical Strain (%)
STAGE 1	470	350	120	186.01	49.7	256.31	70.30	3.37
STAGE 2	590	350	240	281.62	115.2	406.42	124.80	2.15
STAGE 3	830	350	· 480	436.35	260.1	656.25	219.90	2.37

Effective Total 27 Angle of Frictional Resistance: 15 42 kPa 22 Cohesion:

Linear Regression Coefficient:

0.998

kPa 1.000

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, sandy, firm, light grey with dark grey, white, orange brown and reddish brown, low plasticity, dilatant.

Failure Mode:

Planar / Plastic

Test Speed:

0.032 (mm/min)

Test Remarks:

The sample was saturated by increments of cell pressure and back pressure.

Failure for each stage was determined by either the maximum effective stress ratio or the maximum deviator stress. Strength

parameters have been derived by using a linear regression fitting method.

Entered by: Date: Checked by: Date

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG2 Form Date: July 2003

P:\615300\615300.001\WorkingMaterial\BH1-PT1\BH1-P

Plate No.:

Entered by:

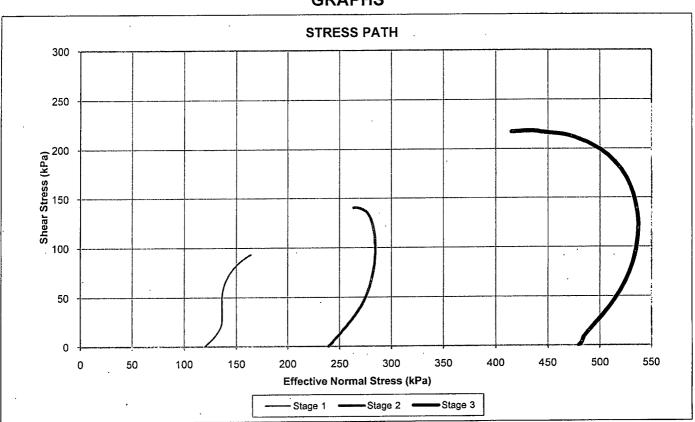
Im

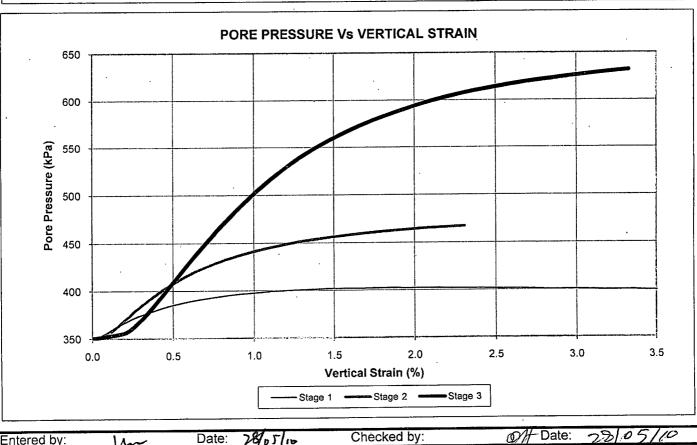
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: PT1

Page of


Job No.: 615300.001


Depth:

6.25 -- 6.37 (m)

Test pit/Bh No.: BH1

GRAPHS

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-1 July 2003 Form Date:

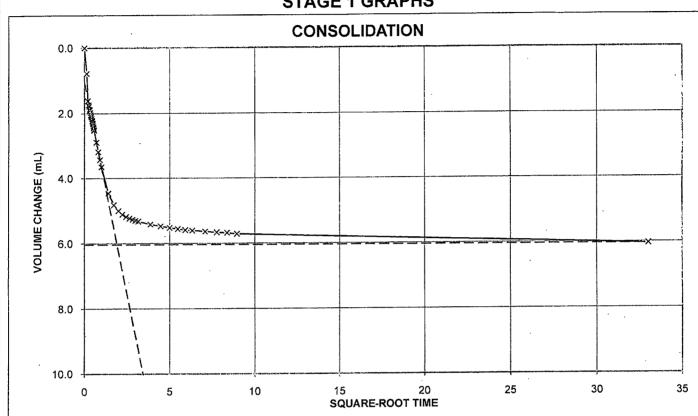
P:\815300\615300.001\WorkingMaterial\BH1-PT1\BH

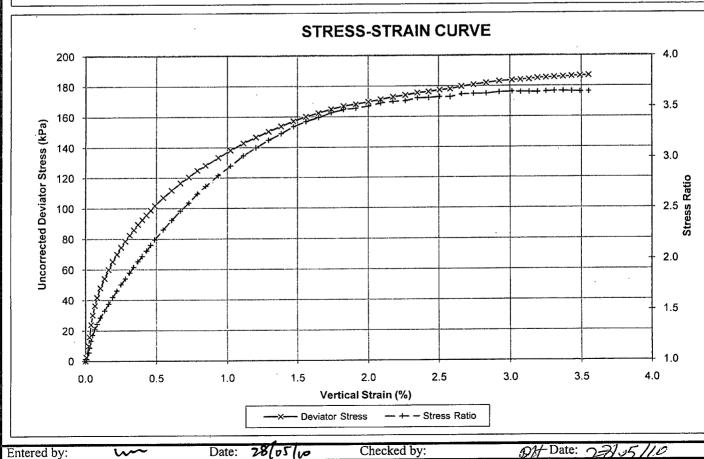
(m)

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Sample No.: PT1


Page

of Job No.: 615300.001

6.25 -- 6.37 Depth:

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-2 Form Date: July 2003

2:\615300\615300.001\WorkingMaterial\8H1-PT1\8H1-

of

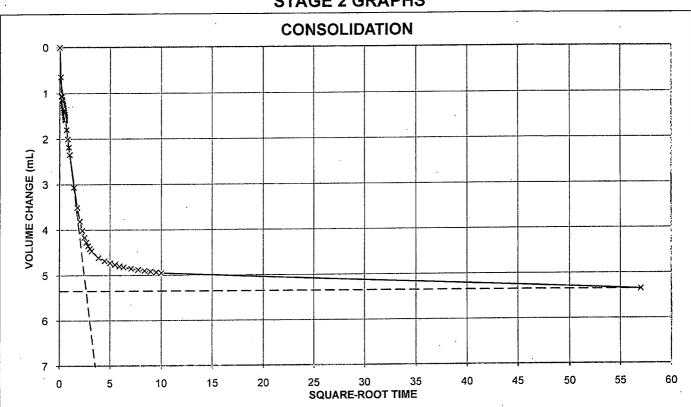
Plate No.:

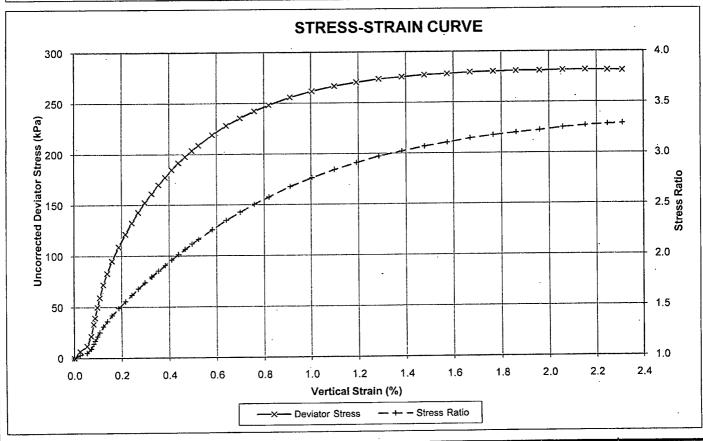
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Page

Job No.: Depth:


615300.001


6.25 -- 6.37 (m)

Test pit/Bh No.: BH1

Sample No.: PT1

STAGE 2 GRAPHS

Dit Date: 28 Checked by: Entered by: Date: m

2

3

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-3 July 2003 Form Date:

P:\615300\615300.001\WorkingMaterial\BH1-PT1\BI

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001

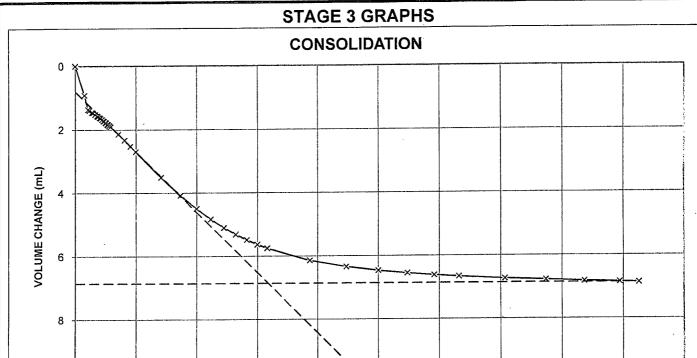
Job No.:

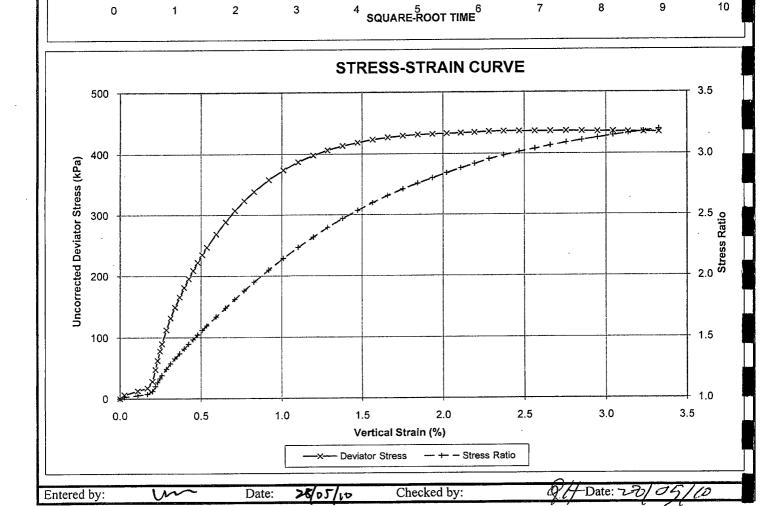
Page of 615300.001

Test pit/Bh No.: BH1

10

0


Sample No.: PT1


Depth: 6.25 -- 6.37

8

7

(m)

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TP1 July 2003 Form Date:

Plate No.:

Site: Huia Watercare Plant, Titirangi Your Ref No.: 27064.001

Page of Job No.:

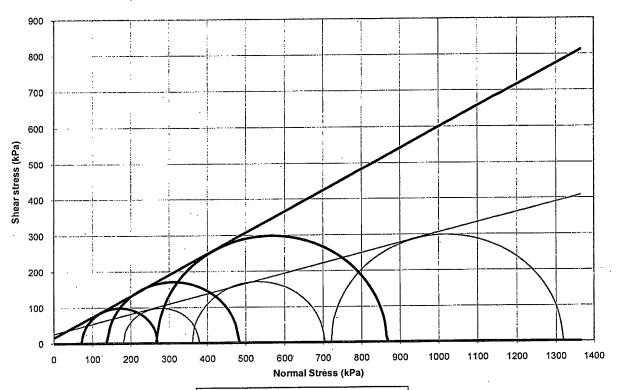
615300.001

Test pit/Bh No.: BH1

Sample No.: PT2

Depth:

9.36 -- 9.47 (m)


Test method used: BS1377:Part 8:1990:Clause 5 Saturation

BS1377:Part 8:1990:Clause 6 Consolidation

BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Total Stress Effective Stress

Initial Sample Height:	112.80	mm	Initial Water Content:	45.7	%
Initial Sample Diameter:	53.55	mm	Initial Bulk Density:	1.76	t/m³
Initial B Value:	72	%	Initial Dry Density:	1.21	t/m³
B Value before Consolidation:	98	%	Final Water Content:	36.5	%

	Cor	Consolidation Stage			Failure Values				
	Cell Pressure	Back Pressure	Eff. Consol.	Deviator Stress	Pore Pressure Change During Shearing δu(kPa)		Principal (kPa) Minor σ3'	Vertical Strain (%)	
STAGE 1	(kPa) 480	(kPa) 300	Stress 180	(kPa) 197.37	107.8	269.57	72.20	6.93	
STAGE 2	660	300	360	342.54	221.2	481.34	138.80	4.77	
STAGE 3	1020	300	720	597.15	451.8	865.35	268.20	3.21	

Effective Total 30 Angle of Frictional Resistance: $\phi =$ 16 16 kPa kPa c =27 Cohesion: 1.000 0.999 Linear Regression Coefficient:

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, sandy, with minor clay, firm, brown with orange and black, low to medium plasticity, dilatant.

Planar / Plastic Failure Mode: .

0.038 (mm/min) **Test Speed:**

The sample was saturated by increments of cell pressure and back pressure. Test Remarks:

Failure for each stage was determined by either the maximum effective stress ratio or the maximum deviator stress. Strength

parameters have been derived by using a linear regression fitting method.

Date: 15/6/10 Checked by: SDG Date: Entered by:

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG2 July 2003 Form Date:

T:\Geotechnics\Projects\615300\615300,001\Working\

of

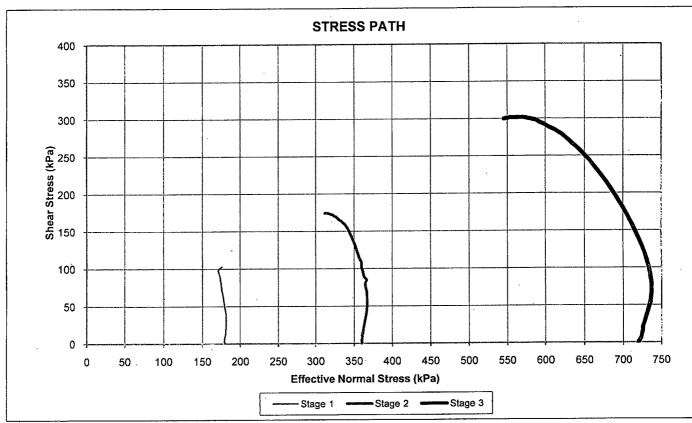
Plate No.:

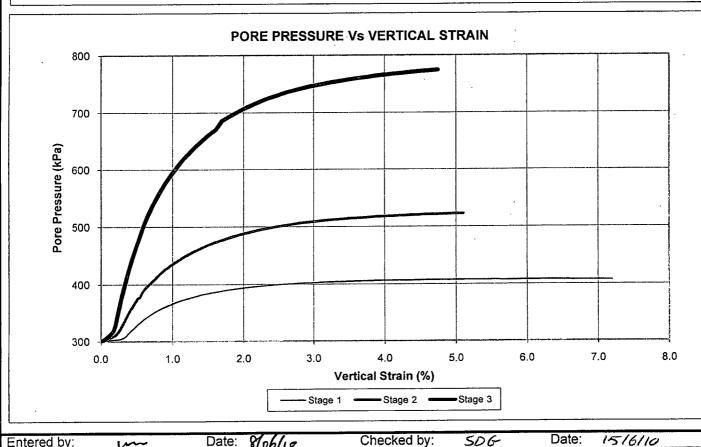
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Page Job No.:

Depth:


615300.001


9.36 -- 9.47 (m)

Test pit/Bh No.: BH1

Sample No.: PT2

GRAPHS

SDG

Date:

Entered by:

8/06/10

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-1 Form Date: July 2003

T:\Geotechnics\Projects\615300\615300.001\WorkingMi

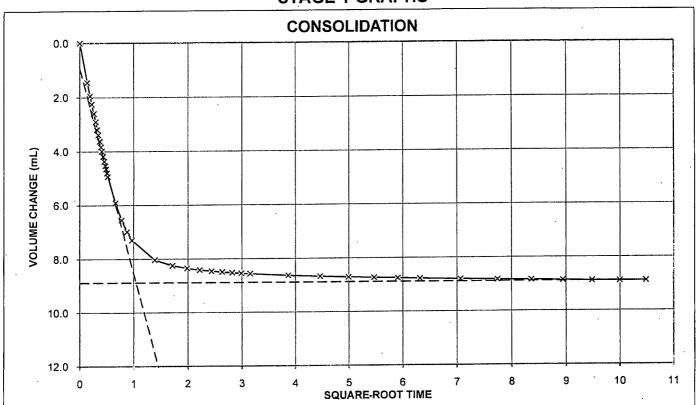
(m)

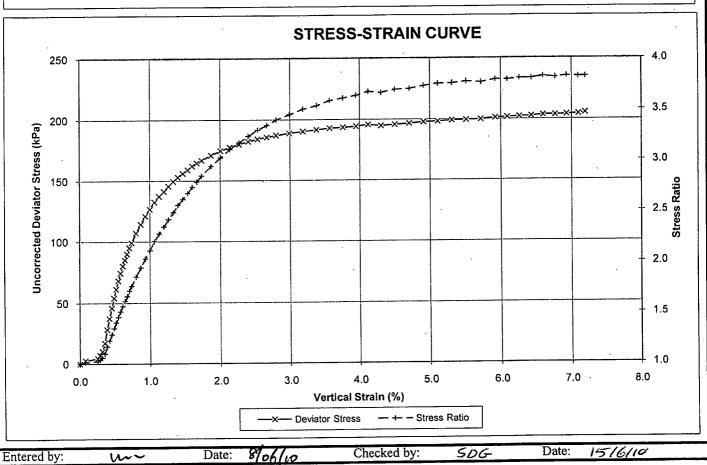
Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Page Job No.:


of 615300.001


Test pit/Bh No.: BH1

Sample No.: PT2

9.36 -- 9.47 Depth:

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-2 July 2003 Form Date:

T:\Geotechnics\Projects\615300\615300.001\Working

(m)

of

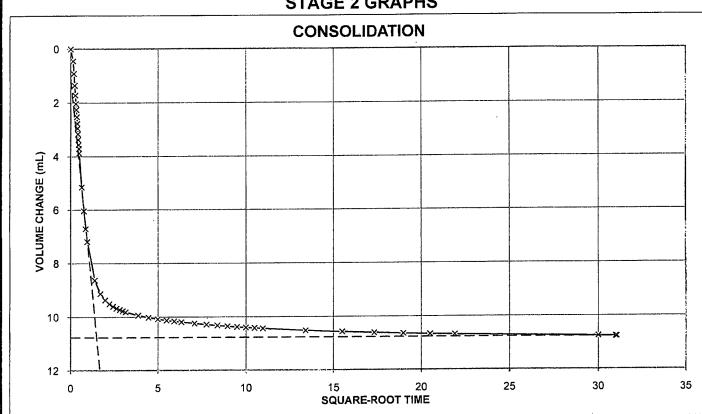
Plate No.:

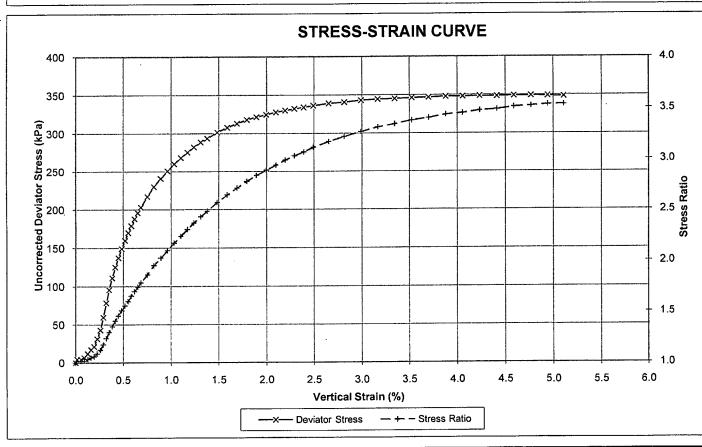
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Page

Depth:


Job No.: 615300.001


9.36 -- 9.47

Test pit/Bh No.: BH1

Sample No.: PT2

STAGE 2 GRAPHS

Checked by:

SDG

Date:

15/6/10

Date:

Entered by:

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-3 Form Date: July 2003

T:\Geolechnics\Projects\615300\815300.001\WorkingMa

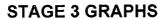
of

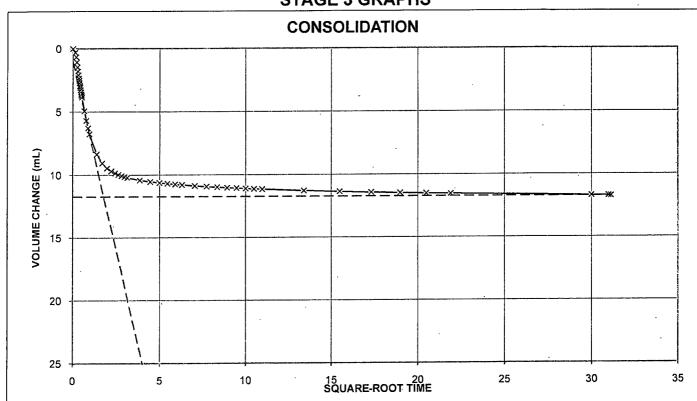
Plate No.:

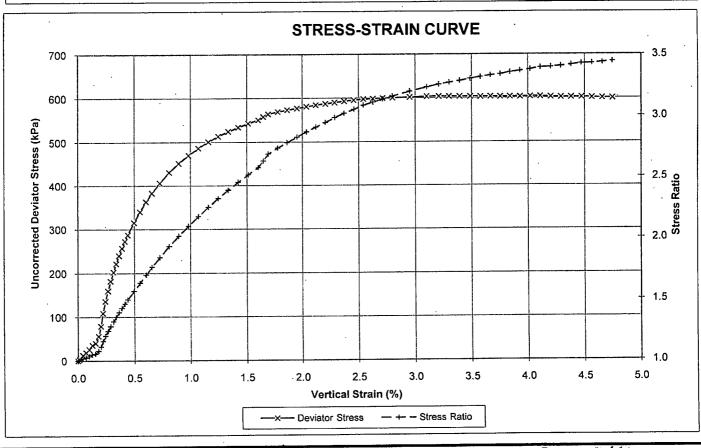
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: PT2


615300.001 Job No.:


Page


Depth:

9.36 -- 9.47

(m)

15/6/10 8/06/10 Checked by: Date: SDG Date: Entered by: m-

p. +64 9 356 3510

w. www.geotechnics.co.nz

 Form No.:
 TP1

 Form Date:
 July 2003

P:\615300\615300,001\WorkingMaterial\BH4-PT1\8H

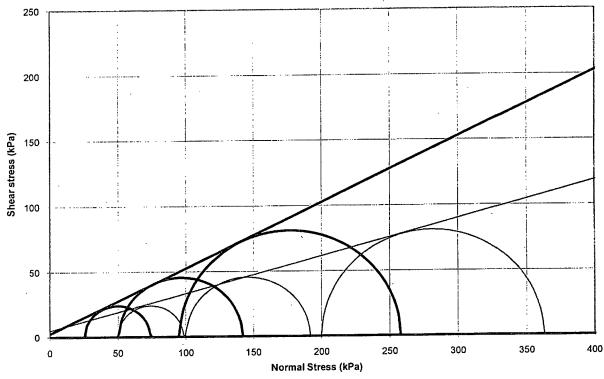
Plate No.:

Site: Huia Watercare Plant, Titirangi

Your Ref No.: 27064.001

Page c

Job No.: 615300.001 Depth: 2.75 -- 2.86 (m)


Test pit/Bh No.: BH4 Sample Notest method used: BS1377:Part 8:1990:Clause 5 Saturation

Sample No.: PT1 Depth: 2.75 - aturation BS1377:Part 8:1990:Clause 6 Consolidation

BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Effective Stress — Total Stress —

Initial Sample Height:	111.11	mm	Initial Water Content:	61.2	%
Initial Sample Diameter:	53.85	mm	Initial Bulk Density:	1.61	t/m³
Initial B Value:	60	%	Initial Dry Density:	1.00	t/m³
B Value before Consolidation:	96	%	Final Water Content:	52.5	%

	Cor	Consolidation Stage			Failure Values				
	Cell Pressure	Back Pressure	Eff. Consol.	Deviator Stress	Pore Pressure Change During		Principal (kPa)	Vertical Strain (%)	
	(kPa)	(kPa)	Stress	(kPa)	Shearing δμ(kPa)	Major σ1'	Minor σ3'	`	
STAGE 1	350	300	50	48.06	24.4	73.66	25.60	4.46	
STAGE 2	400	300	100	91.34	49.3	142.04	50.70	4.99	
STAGE 3	500	300	200	162.41	104.6	257.81	95.40	6.06	

Total Effective

Angle of Frictional Resistance: $\phi = 16$ ° $\phi' = 27$ °

Cohesion: c = 5 kPa c' = 3 kPa

Linear Regression Coefficient: r = 0.999 r = 1.000

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, with some clay and minor sand, soft, grey, medium to high plasticity, dilatant.

Failure Mode: Planar / Plastic

Test Speed: 0.018 (mm/min)

Test Remarks: The sample was saturated by increments of cell pressure and back pressure.

Failure for each stage was determined bythe maximum deviator stress. Strength parameters have been derived by using a

linear regression fitting method.

Entered by: Date: 8/06/10 Checked by: SDG Date: 15/6/10

p. +64 9 356 3510w. www.geotechnics.co.nz

Form No.: TG2
Form Date: July 2003

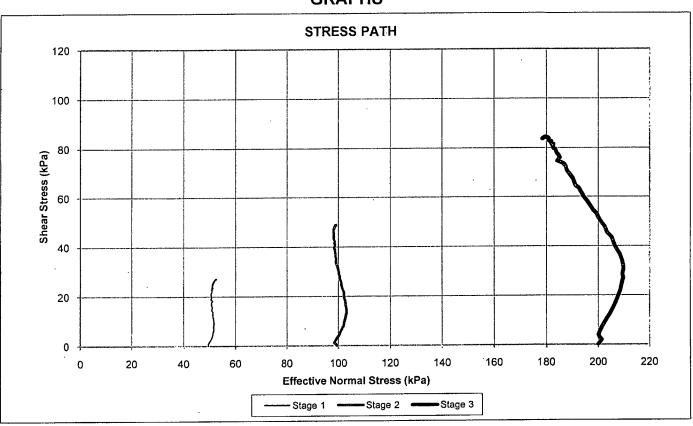
P:\615300\615300.001\WorkingMaterial\BH4-PT1\BH4-P

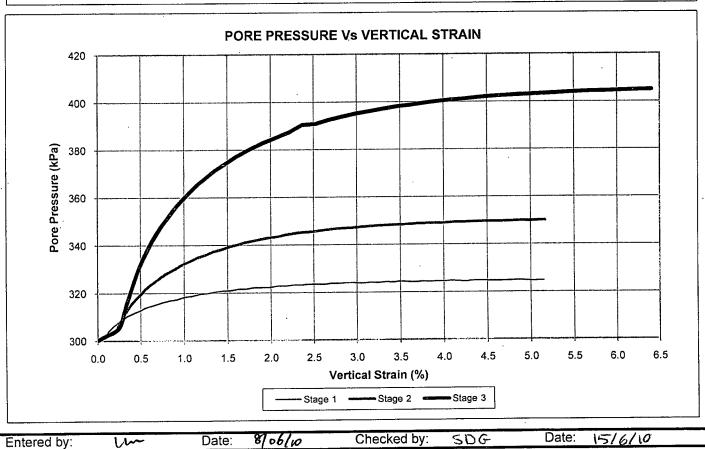
(m)

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page of Job No.: 615300.001


Test pit/Bh No.: BH4

Sample No.: PT1

Depth: 2.75 -- 2.86

GRAPHS

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

w. www.geotechnics.co.nz

TG1-1 Form No.: July 2003 Form Date:

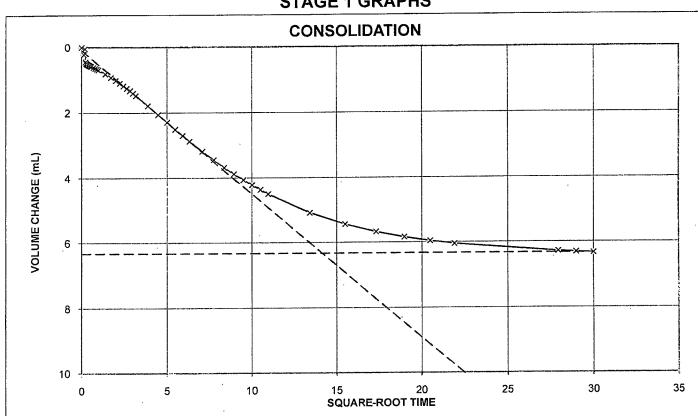
:\615300\615300.001\WorkingMaterial\BH4-PT1\BH

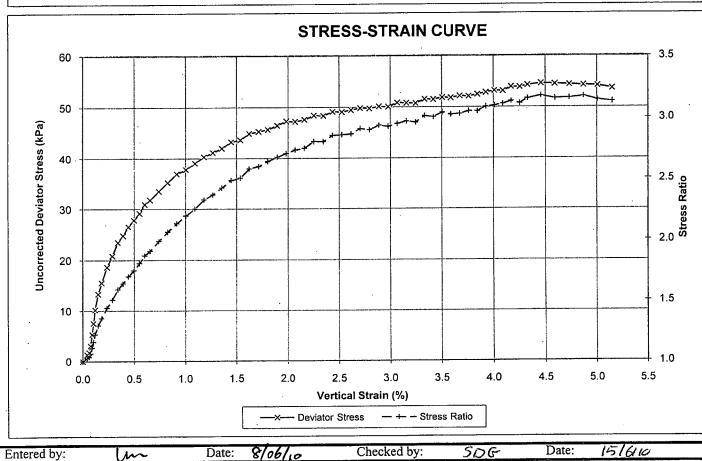
Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: PT1


Page Job No.:


of 615300.001

Depth: 2.75 -- 2.86

(m)

23 Morgan Street, Newmarket Auckland 1023, New Zealand

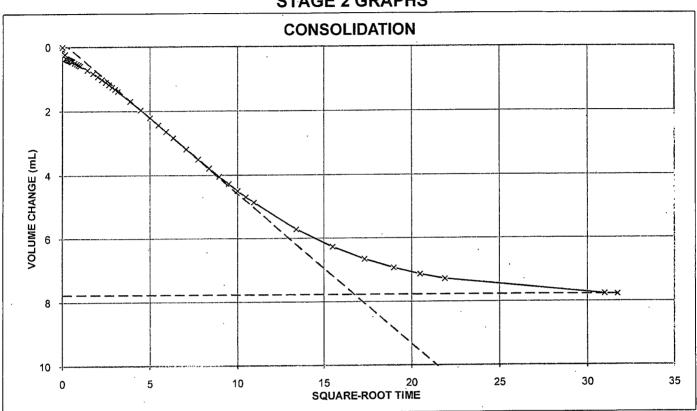
p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-2 Form Date: July 2003

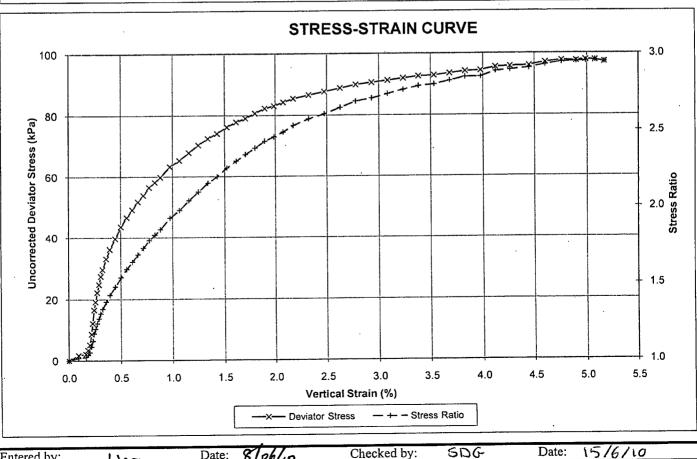
2:\615300\615300.001\WorkingMaterial\BH4-PT1\BH4

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page of


615300.001 Job No.:

Depth: 2.75 -- 2.86 (m)

Sample No.: PT1

Checked by:

Date:

Entered by:

Lu-

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-3 Form Date: July 2003

P:\615300\615300.001\WorkingMaterial\BH4-PT1\BH

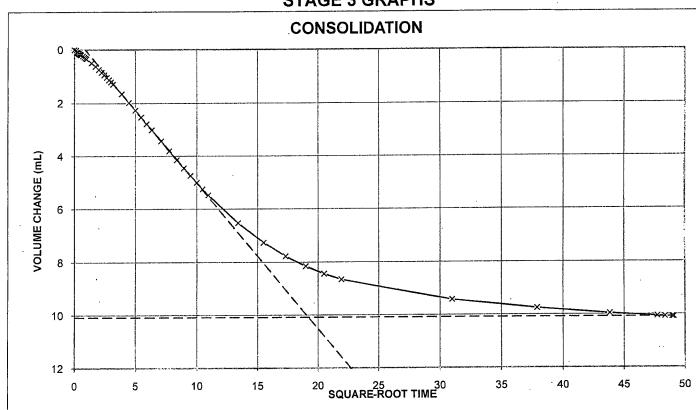
(m)

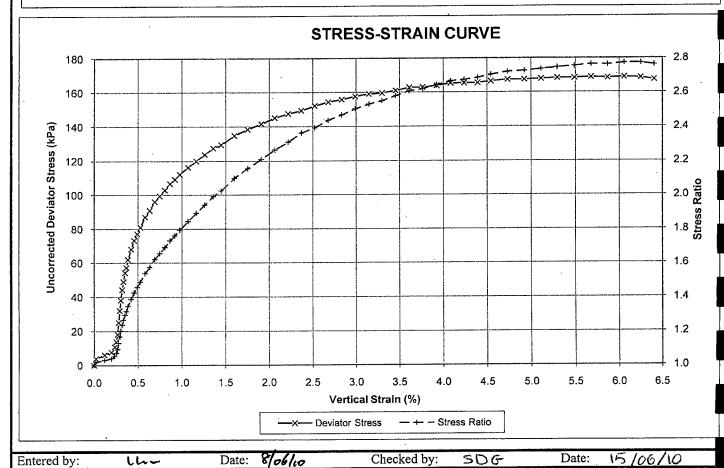
Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: PT1


Page Job No.:


615300.001

Depth:

2.75 -- 2.86

STAGE 3 GRAPHS

p. +64 9 356 3510w. www.geotechnics.co.nz

Form No.: TP1
Form Date: July 2003

:\Geotechnics\Projects\815300\615300.001\Working\

Plate No.:

Site:

Huia Watercare Plant, Titirangi

Your Ref No.: 27064.001

Page of Job No.: 6

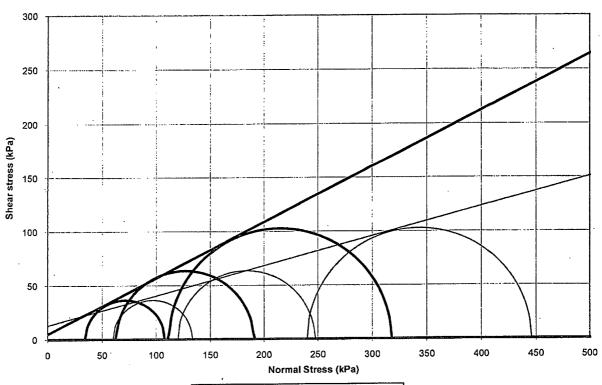
615300.001

Test pit/Bh No.: BH6

Sample No.: PT3

Depth:

3.21 -- 3.32 (m)


Test method used: BS1377:Part 8:1990:Clause 5 Saturation

BS1377:Part 8:1990:Clause 6 Consolidation

BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Effective Stress — Total Stress —

Initial Sample Height:	110.04	mm	Initial Water Content:	62.3	%
Initial Sample Diameter:	53.94	mm	Initial Bulk Density:	1.60	t/m³
Initial B Value:	38	%	Initial Dry Density:	0.99	t/m³
B Value before Consolidation:	98	%	Final Water Content:	60.1	%

	Consolidation Stage			Failure Values				
	Cell Pressure	Back Pressure	Eff. Consol.	Deviator Stress	Pore Pressure Change During	• •		Vertical Strain
	(kPa)	(kPa)	Stress	(kPa)	Shearing δμ(kPa)	Major ol'	Minor σ3'	(%)
STAGE 1	360	300	60	73.33	25.5	107.83	34.50	3.52
STAGE 2	420	300	120	127.10	56.8	190.30	63.20	2.77
STAGE 3	540	300	240	205.58	128.2	317.38	111.80	3.42

Angle of Frictional Resistance: $\phi=15$ ° $\phi'=27$ ° Cohesion: c=13 kPa c'=5 kPa Linear Regression Coefficient: r=0.996

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, with some clay and minor sand, soft, grey with orange brown, medium to high plasticity, dilatant.

Failure Mode: Planar / Plastic

Test Speed:

0.02 (mm/min)

Test Remarks:

The sample was saturated by increments of cell pressure and back pressure.

Failure for each stage was determined by either the maximum effective stress ratio or the maximum deviator stress. Strength

parameters have been derived by using a linear regression fitting method.

Entered by: Date: 8/06/10 Checked by: SDG Date: 15/6/10

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG2 Form Date: July 2003

T:\Geotechnics\Projects\615300\615300.001\Working

15/6/10

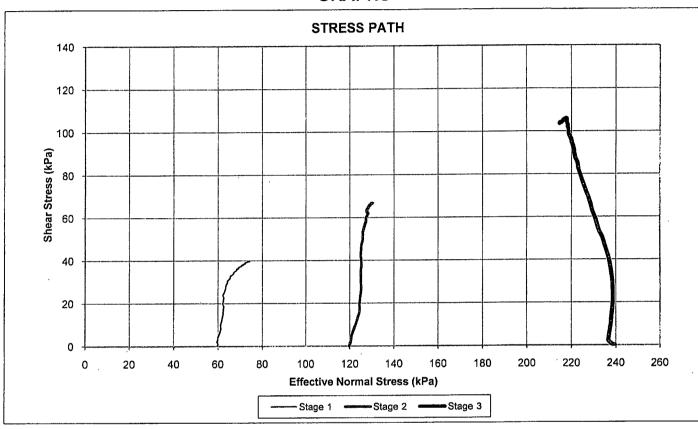
(m)

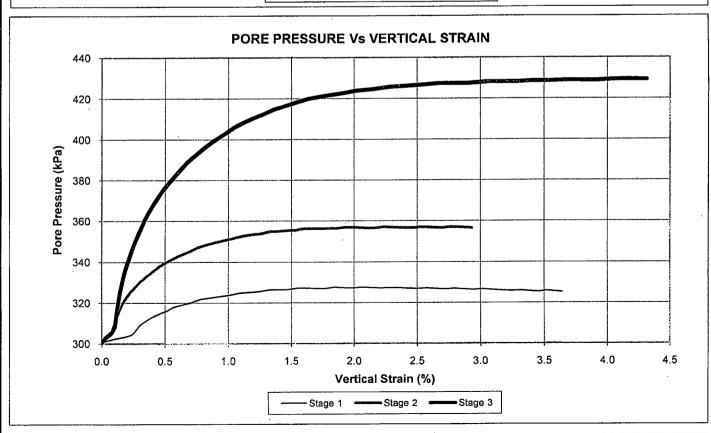
Plate No.:

of

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page Job No.: 615300.001


Test pit/Bh No.: BH6

Sample No.: PT3

Depth: 3.21 -- 3.32

GRAPHS

8/06/10 Checked by: Date: Date: 506 Entered by: m

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-1 Form Date: July 2003

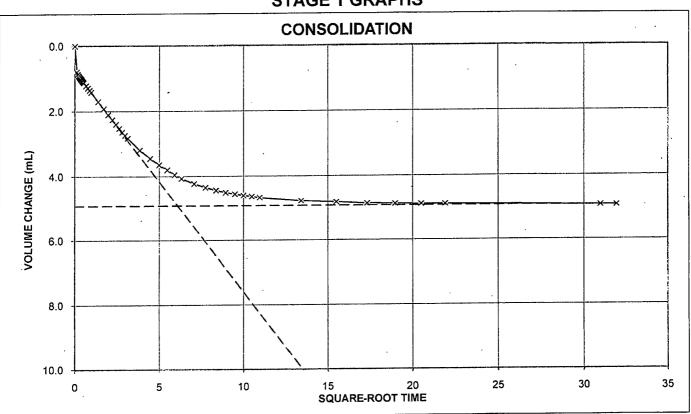
T:\Geotechnics\Projects\615300\815300.001\WorkingMa

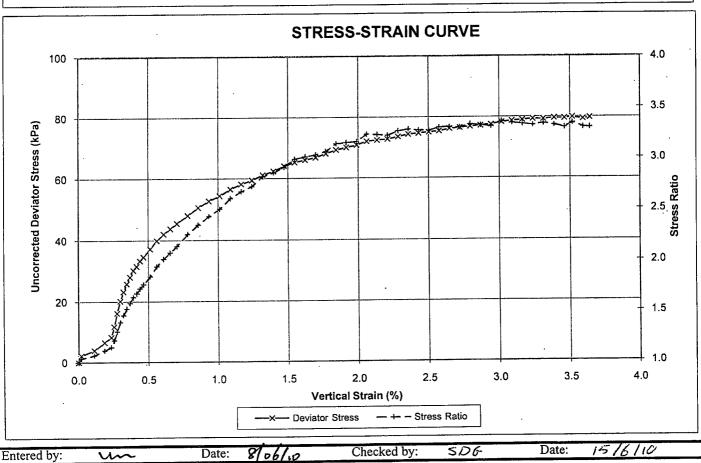
Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: PT3


Page of 615300.001 Job No.:


Depth:

3.21 -- 3.32

(m)

STAGE 1 GRAPHS

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-2 July 2003 Form Date:

T:\Geotechnics\Projects\615300\815300.001\Working

(m)

Plate No.:

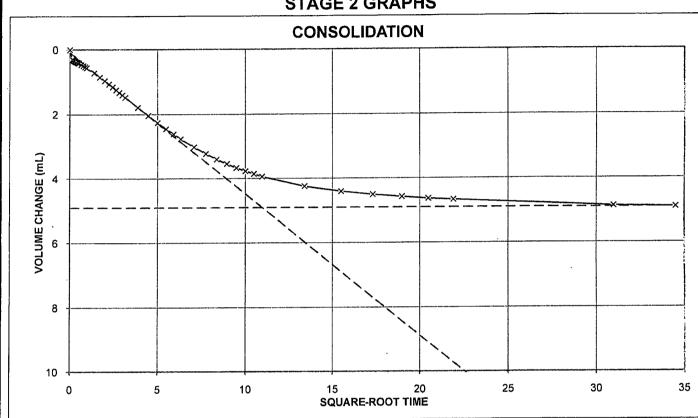
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: PT3

Page of

Job No.: 615300.001


Date:

SDG

15/6/10

Depth: 3.21 -- 3.32

Checked by:

Date:

Entered by:

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-3 Form Date: July 2003

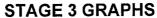
T:\Geotechnics\Projects\615300\815300.001\WorkingMa

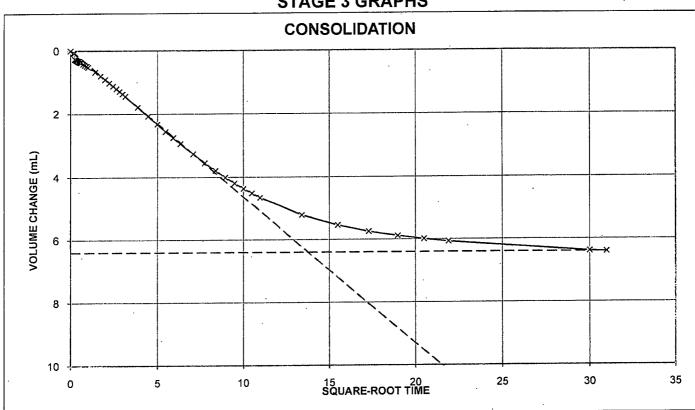
(m)

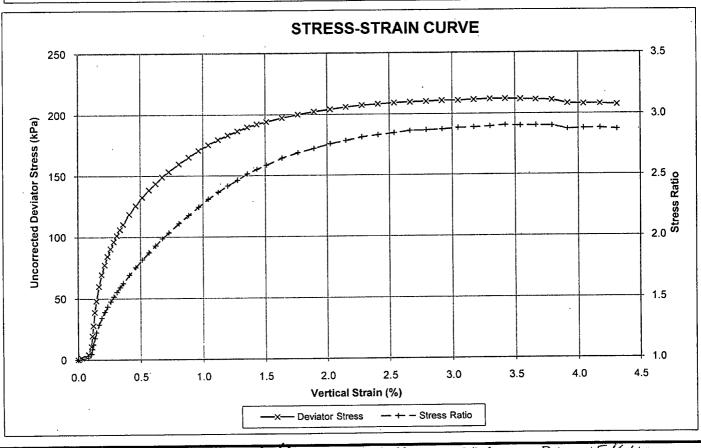
of

Plate No.:

Site:


Huia Watercare Plant, Your Ref No.: 27064.001


Page Job No.: 615300.001


Test pit/Bh No.: BH6

Sample No.: PT3

3.21 -- 3.32 Depth:

Date: Checked by: SD6 15/6/10 Date: Entered by: un

p. +64 9 356 3510

w, www.geotechnics.co.nz

Form No.: TP1
Form Date: July 2003

P:\815300\815300.001\WorkingMateriaf\BH6-PT4\BH6

Plate No.:

Site:

Huia Watercare Plant, Titirangi

Your Ref No.: 27064.001

Page of

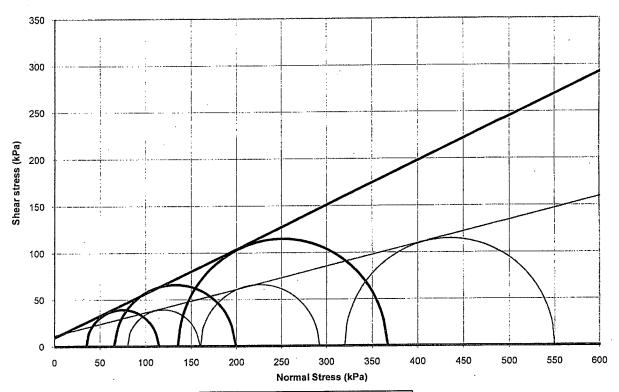
Job No.: 615300.001

Test pit/Bh No.: BH6

Sample No.: PT4

Depth:

4.60 -- 4.71 (m)


Test method used: BS1377:Part 8:1990:Clause 5 Saturation

BS1377:Part 8:1990:Clause 6 Consolidation

BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Effective Stress — Total Stress —

Initial Sample Height:	116.22	mm	Initial Water Content:	70.1	%
Initial Sample Diameter:	53.89	mm	Initial Bulk Density:	1.57	t/m³
Initial B Value:	40 ·	%	Initial Dry Density:	0.92	t/m³
B Value before Consolidation:	96	%	Final Water Content:	64.6	%

	Consolidation Stage			Failure Values						
	Cell Pressure	Back Pressure	Eff. Consol.	Deviator Stress	Pore Pressure Change During	Stress (kPa)		Vertical Strain (%)		
	(kPa)	(kPa)	Stress	(kPa)	Shearing δμ(kPa)	Major o1'	Minor o3'	(/0 /		
STAGE 1	380	300	80	78.53	44.8	113.73	35.20	3.24		
STAGE 2	460	300	160	131.66	93.6	198.06	66.40	2.65		
STAGE 3	620	300	320	229.75	184	365.75	136.00	2.78		

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, with some clay, firm, light grey with grey / black and orange brown, medium plasticity, dilatant.

Failure Mode: Planar / Plastic

Toot Spood:

0.038 (mm/min)

Test Remarks:

The sample was saturated by increments of cell pressure and back pressure.

Failure for each stage was determined by the maximum deviator stress. Strength parameters have been derived by using a

linear regression fitting method.

Entered by: Date: 8/06/10 Checked by: SDG Date: 17/6/10

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG2
Form Date: July 2003

P:\615300\615300.001\WorkingMaterial\BH8-PT4\BH6-P

Plate No.:

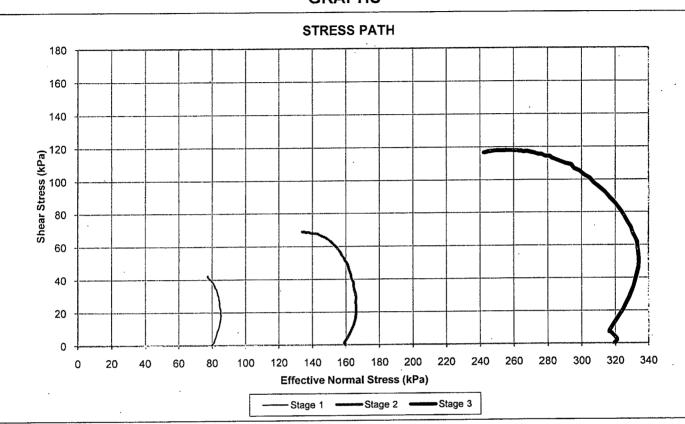
Site:

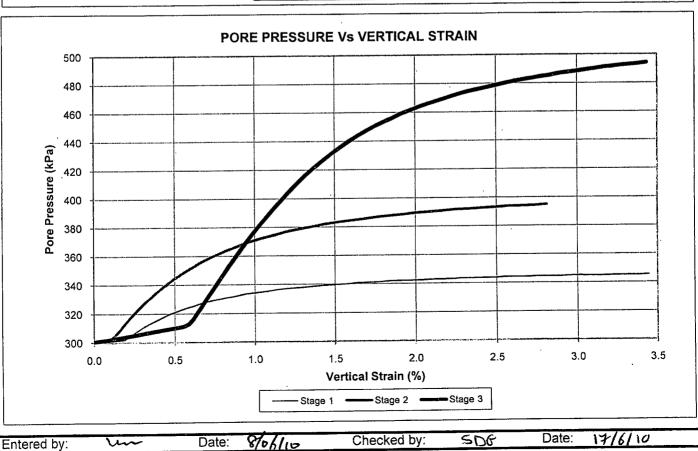
Huia Watercare Plant, Your Ref No.: 27064.001

Page of

4.60 -- 4.71

Job No.: 615300.001


Depth:


(m)

Test pit/Bh No.: BH6

Sample No.: PT4

GRAPHS

p. +64 9 356 3510w. www.geotechnics.co.nz

Form No.: TG1-1
Form Date: July 2003

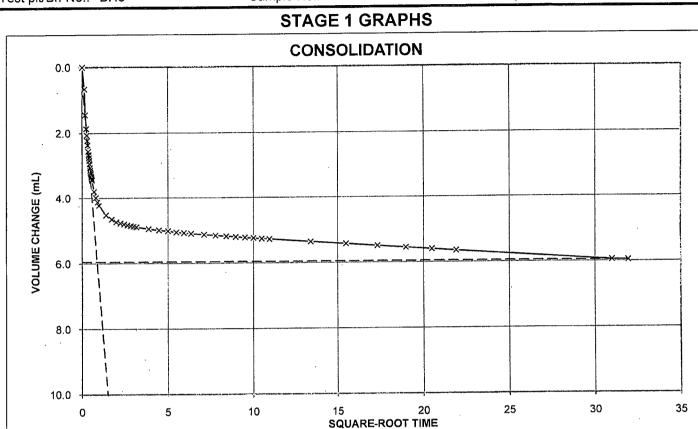
P:\615300\615300.001\WorkingMaterial\BH6-PT4\BH6

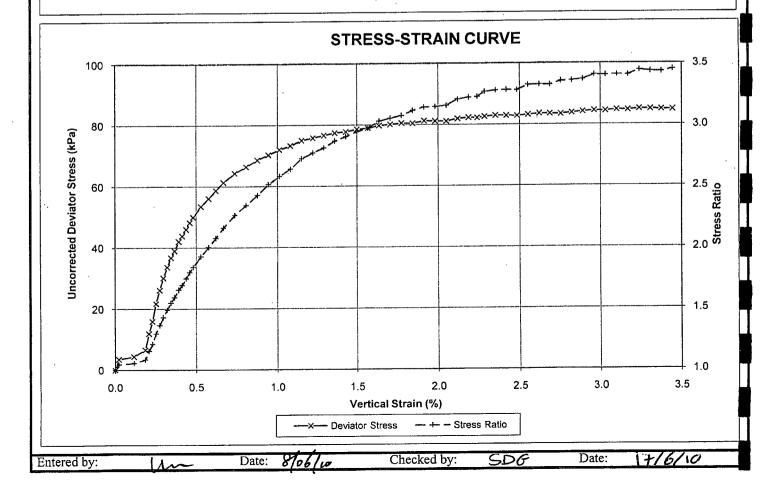
GEOTECHNICS w. www.geotechi

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page of Job No.: 615300.001


300 NO.. 010300.001

Test pit/Bh No.: BH6

Sample No.: PT4

Depth: 4.60 -- 4.71 (m)

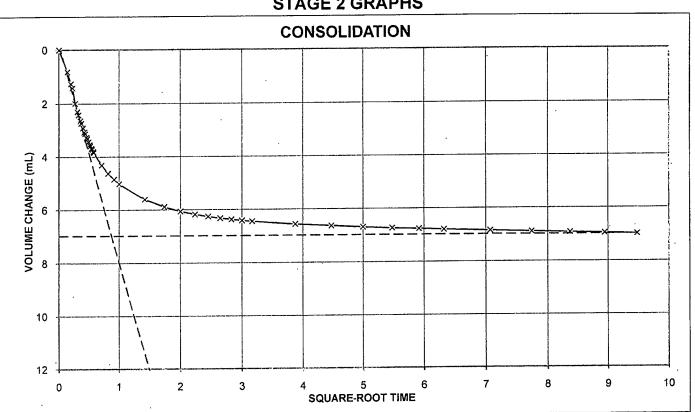
p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-2 Form Date: July 2003 P:\615300\615300.001\WorkingMaterial\BH6-PT4\BH6-

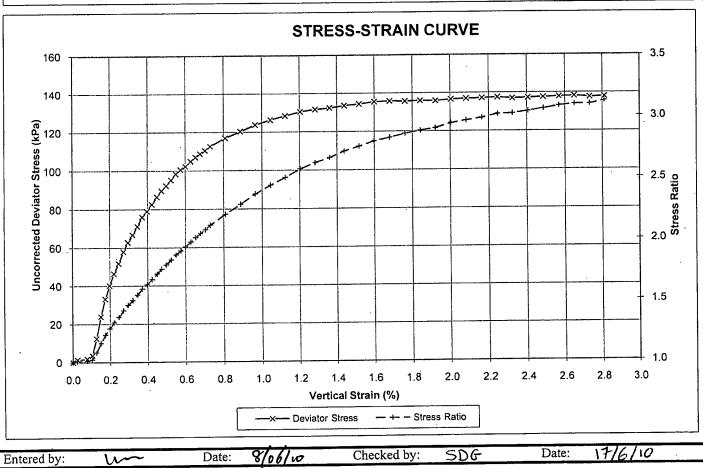
(m)

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Sample No.: PT4


Page of

Job No.: 615300.001 Depth: 4.60 -- 4.71

Test pit/Bh No.: BH6

STAGE 2 GRAPHS

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-3 Form Date: July 2003

P:\615300\615300.001\WorkingMaterial\BH6-PT4\BH

Plate No.:

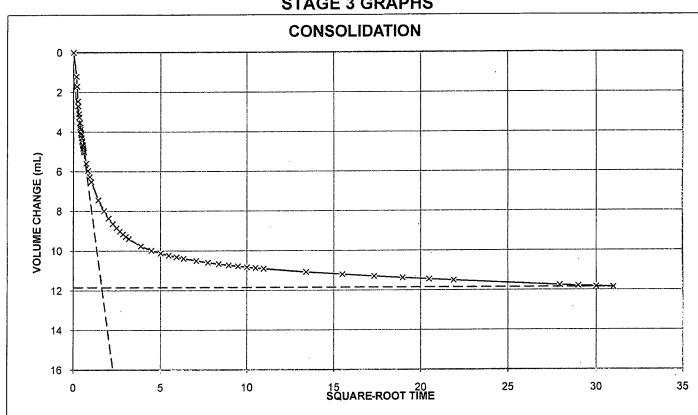
Site:

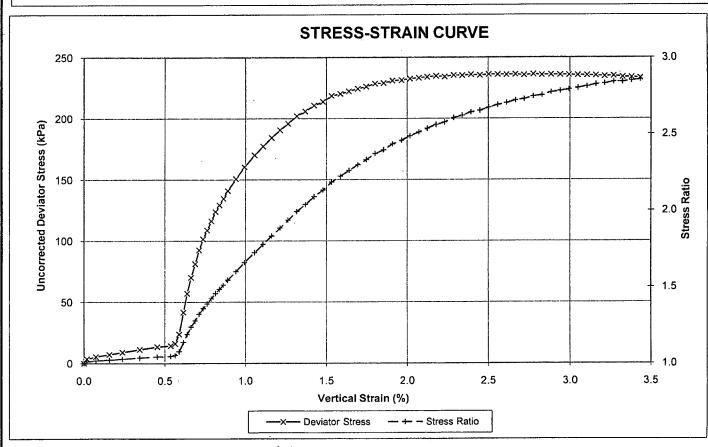
Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: PT4

Job No.:

Depth:


Page of


615300.001

4.60 -- 4.71

(m)

Checked by:

SDG

Date:

17/6/10

8/06/10

Date:

Im

Entered by:

p. ÷64 9 356 3510 w. www.geotechnics.co.nz Form No.: TP1 July 2003 Form Date:

Plate No.:

Site:

Huia Watercare Plant, Titirangi

Your Ref No.: 27064.001

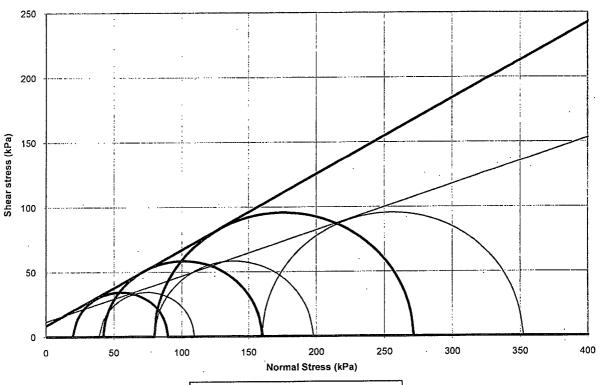
Page Job No.:

615300.001

Test pit/Bh No.: BH8

Sample No.: PT1

Depth:


2.02 -- 2.14 (m)

Test method used: BS1377:Part 8:1990:Clause 5 Saturation

BS1377:Part 8:1990:Clause 6 Consolidation BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Effective Stress -- Total Stress

Initial Sample Height:	118.76	mm	Initial Water Content:	53.1	%
Initial Sample Diameter:	60.32	mm	Initial Bulk Density:	1.63	t/m³
Initial B Value:	22	%	Initial Dry Density:	1.06	t/m³
B Value before Consolidation:	96	%	Final Water Content:	53.2	%

	Consolidation Stage			Failure Values						
	Cell Pressure (kPa)	Back Pressure (kPa)	Eff. Consol. Stress	Deviator Stress (kPa)	Pore Pressure Change During Shearing δμ(kPa)	Stress	Principal (kPa) Minor σ3'	Vertical Strain (%)		
STAGE 1	490	450	40	68.97	19.5	89.47	20.50	3.55		
STAGE 2	530	450	80	117.11	37.5	159.61	42.50	2.44		
STAGE 3	610	450	160	191.47	80.5	270.97	79.50	3.21		

Effective Total 30 19 Angle of Frictional Resistance: $\phi =$ 9 kPa 12 kPa Cohesion: c =1.000 Linear Regression Coefficient:

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, clayey, with some sand, soft to firm, orange brown with black, medium to high plasticity, dilatant.

0.03 Test Speed: Failure Mode: Planar / Plastic

The sample was saturated by increments of cell pressure and back pressure. Test Remarks:

Failure for each stage was determined by the maximum effective stress ratio. Strength parameters have been derived by using

(mm/min)

a linear regression fitting method.

Checked by: SDG Date: Entered by: Date:

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG2 Form Date: July 2003

T:\Geotechnics\Projects\815300\815300.001\Working

Plate No.:

Entered by:

/~~

Date:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001

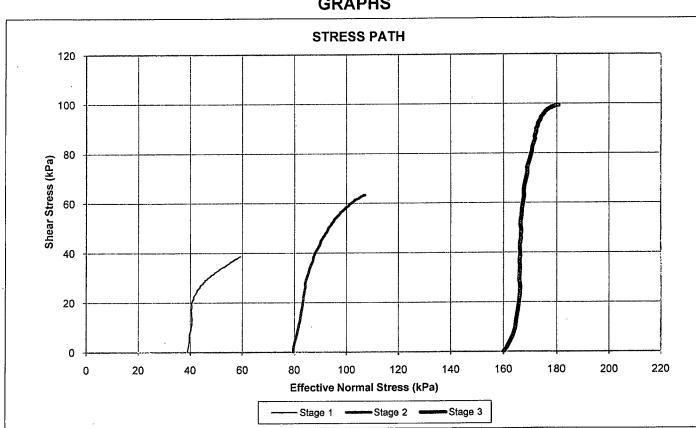
Page

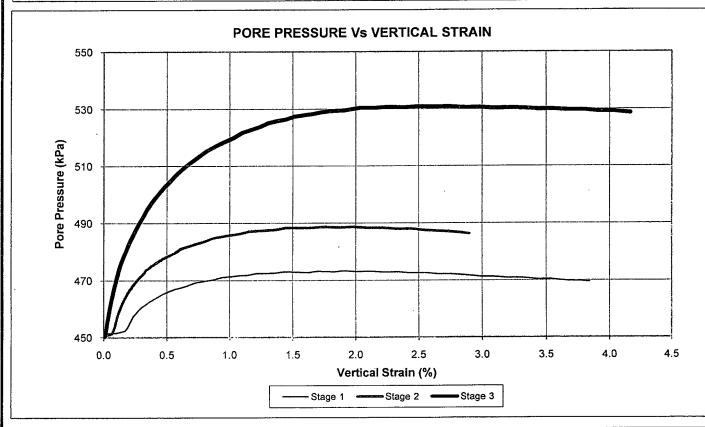
of

Job No.: 615300.001 Depth:

2.02 -- 2.14

Date:


15/6/10


(m)

Test pit/Bh No.: BH8

Sample No.: PT1

GRAPHS

Checked by:

SOG

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-1 Form Date: July 2003

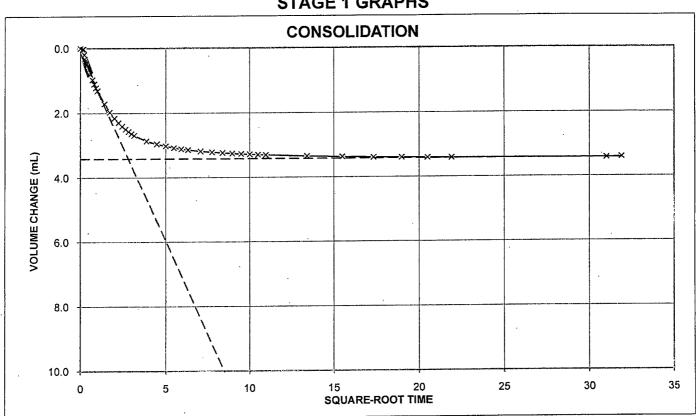
:\Geotechnics\Projects\615300\615300.001\WorkingM

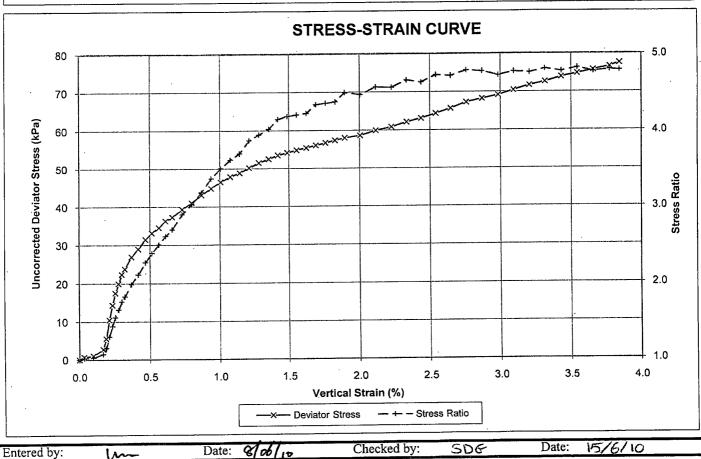
(m)

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page of 615300.001 Job No.:


Test pit/Bh No.: BH8

Sample No.: PT1

2.02 -- 2.14 Depth:

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-2 July 2003 Form Date:

T:\Geotechnics\Projects\615300\615300.001\Workin

of

Plate No.:

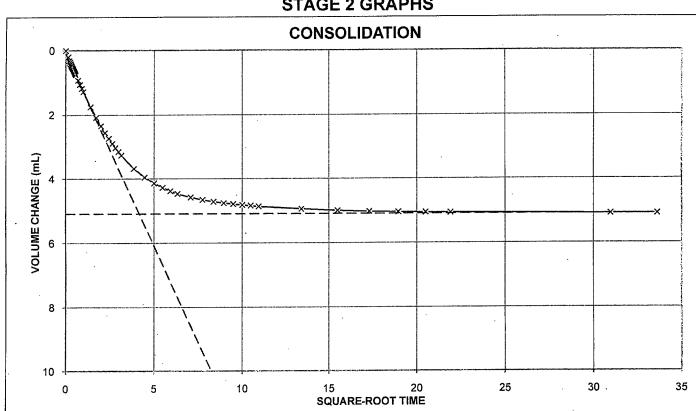
Site:

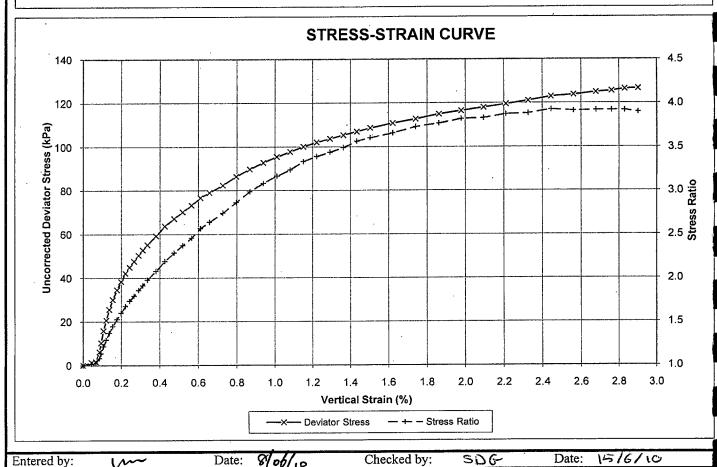
Im

Huia Watercare Plant, Your Ref No.: 27064.001

Page

Job No.: 615300.001


Depth:


2.02 -- 2.14 (m)

Test pit/Bh No.: BH8

Sample No.: PT1

STAGE 2 GRAPHS

p. +64 9 356 3510

w. www.geotechnics.co.nz

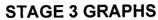
Form No.: TG1-3 July 2003 Form Date:

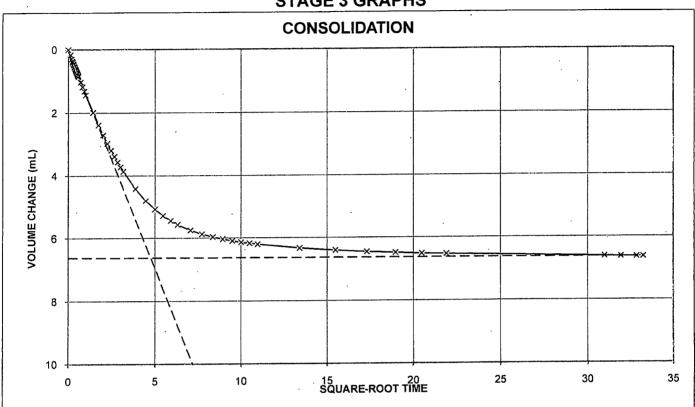
T:\Geotechnics\Projects\815300\815300.001\WorkingM

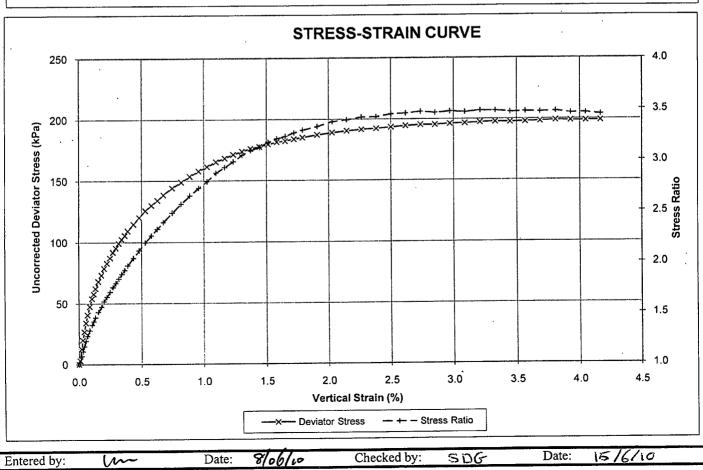
(m)

Plate No.:

Site:


Huia Watercare Plant, Your Ref No.: 27064.001


Page of 615300.001 Job No.:


Test pit/Bh No.: BH8

Sample No.: PT1

2.02 -- 2.14 Depth:

p. +64 9 356 3510

w. www.geotechnics.co.nz

TP1 Form No.: Form Date: July 2003

\Geotechnics\Projects\615300\615300.001\Work

Plate No.:

Site: Huia Watercare Plant, Titirangi Your Ref No.: 27064.001

Page Job No.:

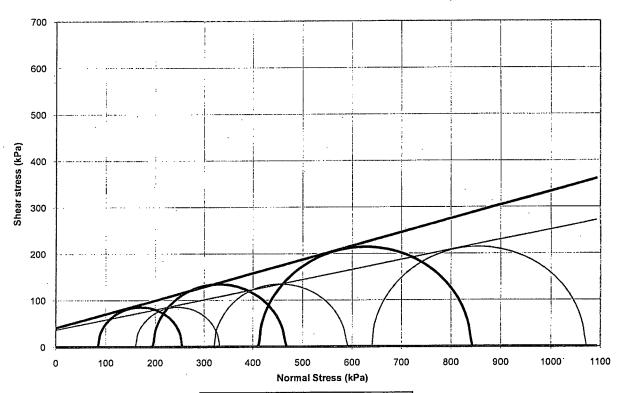
615300.001

Test pit/Bh No.: BH6

Sample No.: SS2

Depth:

7.95 -- 8.05 (m)


Test method used: BS1377:Part 8:1990:Clause 5 Saturation

BS1377:Part 8:1990:Clause 6 Consolidation

BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Effective Stress Total Stress

Initial Sample Height:	101.51	mm	Initial Water Content:	49.6	%
Initial Sample Diameter:	54.46	mm	Initial Bulk Density:	1.69	t/m³
Initial B Value:	50	%	Initial Dry Density:	1.13	t/m³
B Value before Consolidation:	100	%	Final Water Content:	43.6	%

	Cor	solidation	Stage	Failure Values						
	Cell Pressure (kPa)	Back Pressure (kPa)	Eff. Consol. Stress	Deviator Stress (kPa)	Pore Pressure Change During Shearing δμ(kPa)	II.	Principal s (kPa) Minor σ3'	Vertical Strain (%)		
STAGE 1	460	300	160	171.17	75.6	255.57	84.40	2.24		
STAGE 2	620	300	320	268.95	124.1	464.85	195.90	1.72		
STAGE 3	940	300	640	428 91	228.1	840.81	411.90	1.83		

Total **Effective** 12 16 Angle of Frictional Resistance: $\phi =$ kPa Cohesion: c =37 kPa 41 0.999 Linear Regression Coefficient: 0.998

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, with some sand and minor clay, firm, low to medium plasticity, dilatant.

Failure Mode:

Planar

Test Speed:

0.028 (mm/min)

Test Remarks:

The sample was saturated by increments of cell pressure and back pressure.

Failure for each stage was determined by either the maximum effective stress ratio or the maximum deviator stress. Strength parameters have been derived by using a linear regression fitting method.

Date: Checked by: Date: Entered by: 50 G

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG2 Form Date: July 2003

T:\Geotechnics\Projects\815300\815300.001\WorkingMal

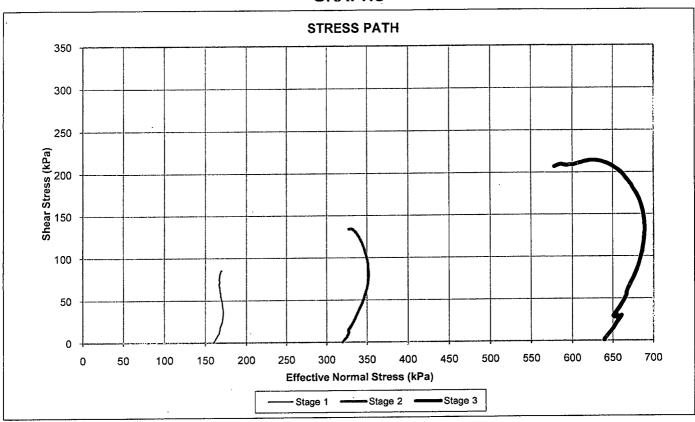
(m)

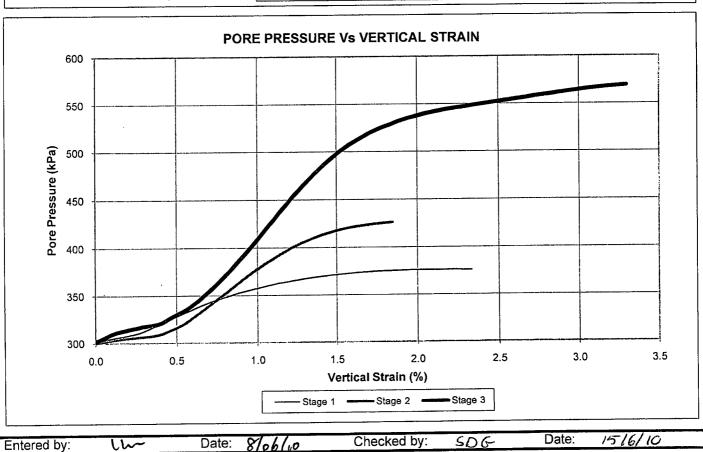
of

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page Job No.: 615300.001


Test pit/Bh No.: BH6

Sample No.: SS2

Depth: 7.95 -- 8.05

GRAPHS

p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-1 July 2003 Form Date:

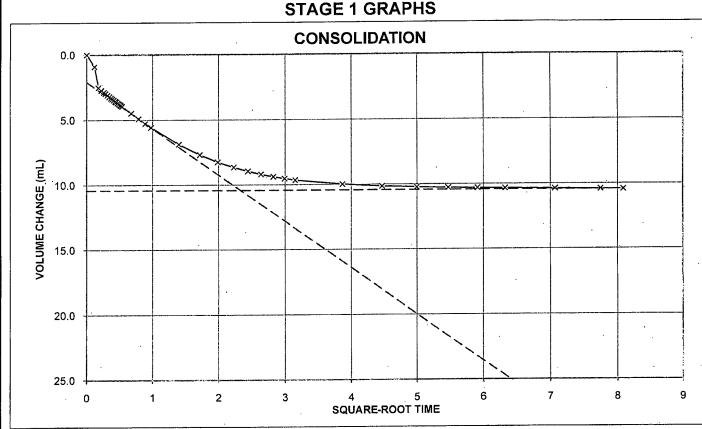
:\Geotechnics\Projects\615300\615300.001\Working

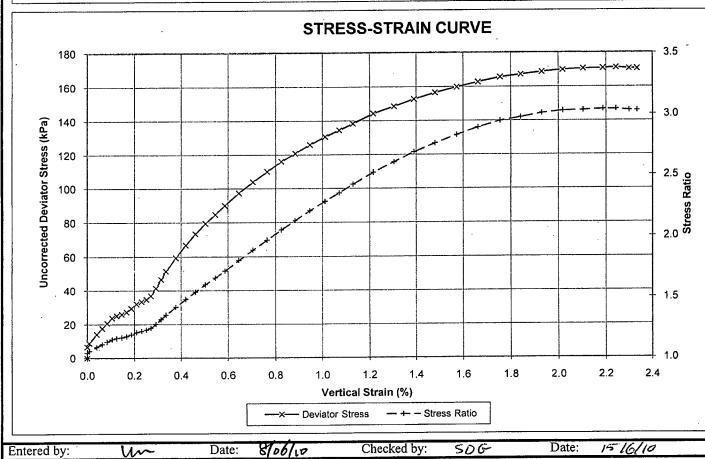
(m)

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page of Job No.: 615300.001


Depth:

7.95 -- 8.05

Test pit/Bh No.: BH6

Sample No.: SS2

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-2 Form Date: July 2003

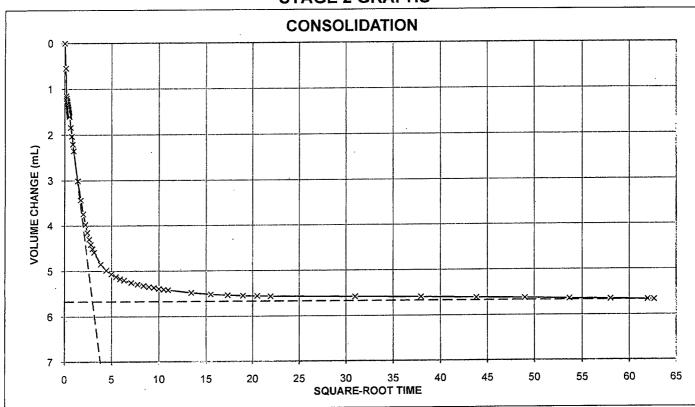
T:\Geotechnics\Projects\615300\615300.001\WorkingM

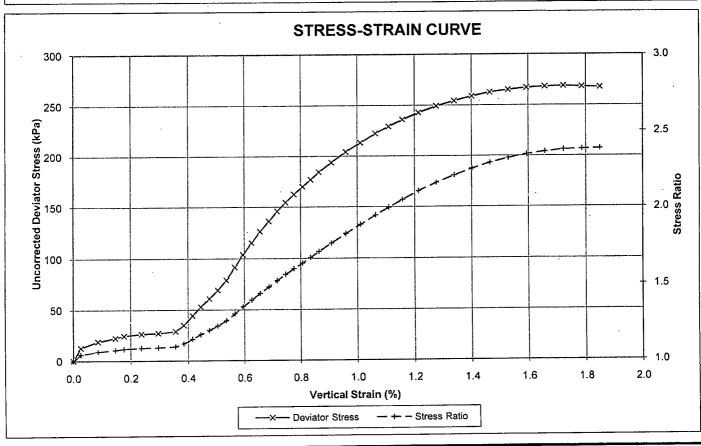
of

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Page Job No.: 615300.001


Sample No.: SS2

7.95 -- 8.05 Depth:

(m)

STAGE 2 GRAPHS

151610 Date: Date: 8/06/10 Checked by: SIDG Entered by: Im

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-3 Form Date: July 2003

of

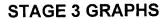
Plate No.:

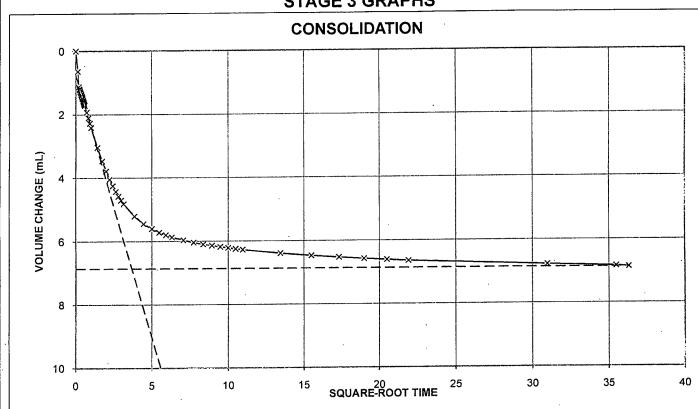
Site:

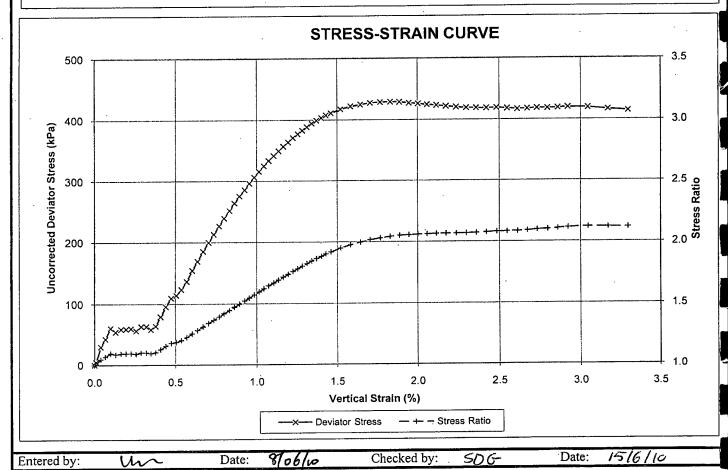
Huia Watercare Plant, Your Ref No.: 27064.001

Job No.:

Page 615300.001


Test pit/Bh No.: BH6


Sample No.: SS2


Depth:

7.95 -- 8.05

(m)

p. ÷64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TP1 Form Date: July 2003

T;\Geotechnics\Projects\815300\615300.001\Working\

Plate No.:

Site:

Huia Watercare Plant, Titirangi

Your Ref No.: 27064.001

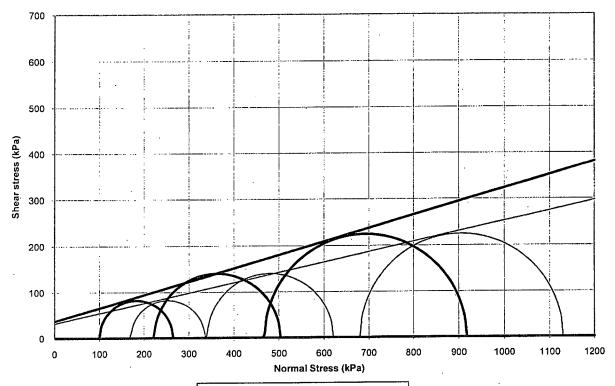
Page Job No.:

615300.001

Test pit/Bh No.: BH6

Sample No.: SS3

Depth:


8.40 -- 8.55 (m)

BS1377:Part 8:1990:Clause 6 Consolidation

Test method used: BS1377:Part 8:1990:Clause 5 Saturation BS1377:Part 8:1990:Clause 7 Consolidated-undrained triaxial compression test with pore pressure measurement

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST (3 STAGES)

MOHR CIRCLES OF TOTAL AND EFFECTIVE STRESSES

Effective Stress -

Initial Sample Height:	121.44	mm	Initial Water Content:	49.5	%
Initial Sample Diameter:	54.57	mm	Initial Bulk Density:	1.72	t/m³
Initial B Value:	44	%	Initial Dry Density:	1.15	t/m³
B Value before Consolidation:	100	%	Final Water Content:	45.2	%

	Consolidation Stage			Failure Values						
	Cell Pressure	Back Pressure	Eff. Consol.	Deviator Stress	Pore Pressure Change During	Effective Stress	Principal (kPa)	Vertical Strain (%)		
	(kPa)	(kPa)	Stress	(kPa)	Shearing δμ(kPa)	Major o1'	Minor o3'			
STAGE 1	470	300	170	164.89	70.4	264.49	99.60	2.13		
STAGE 2	640	300	340	280.44	117.4	503.04	222.60	1.25		
STAGE 3	980	300	680	449.25	212.2	917.05	467.80	1.96		

1	lotai			Literate			
Angle of Frictional Resistance:	φ =	12	o	$\phi' =$	16	0	
Cohesion:	c =	32	kPa	c' =	37 .	kPa	
Linear Regression Coefficient:	r =	0.996		r =	0.996		

Sample History: Undisturbed core trimmed at natural water content.

Soil description: SILT, sandy, firm to stiff, brown with light orange, low plasticity, dilatant. There was an existing shearing plane in the lower

part of the sample.

Failure Mode: Planar

Test Speed:

0.028 (mm/min)

Effective

Test Remarks:

The sample was saturated by increments of cell pressure and back pressure.

Failure for each stage was determined by the maximum deviator stress. Strength parameters have been derived by using a

linear regression fitting method.

SOF Checked by: Entered by: Date:

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG2 July 2003 Form Date:

T:\Geotechnics\Projects\615300\615300.001\Working!

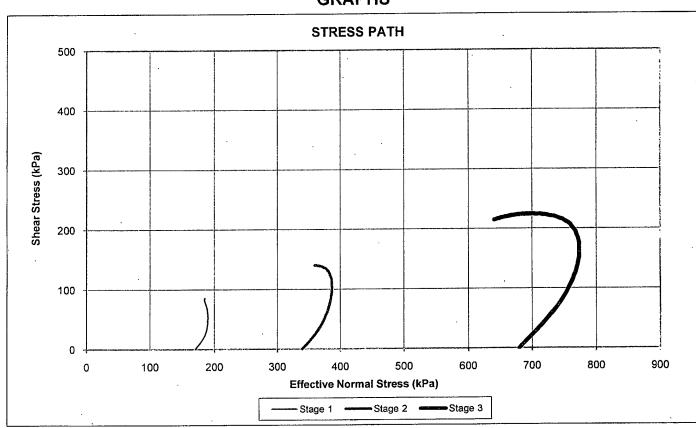
Plate No.:

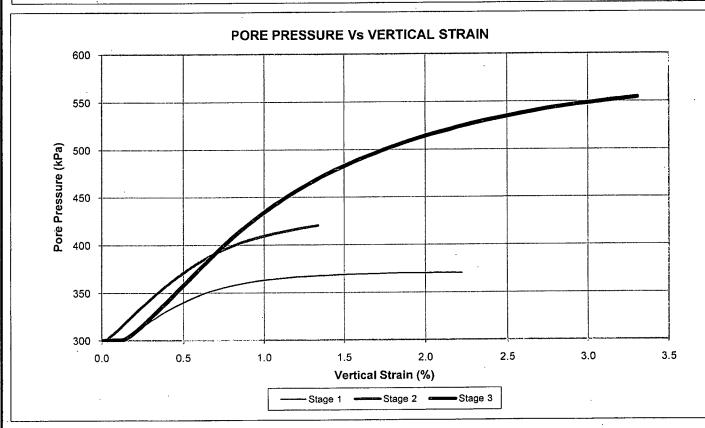
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Sample No.: SS3

Page of


8.40 -- 8.55


615300.001 Job No.:

Depth:

(m)

Checked by: Date: Date: 8/06/w SDG 15/6/10 Entered by:

23 Morgan Street, Newmarket Auckland 1023, New Zealand

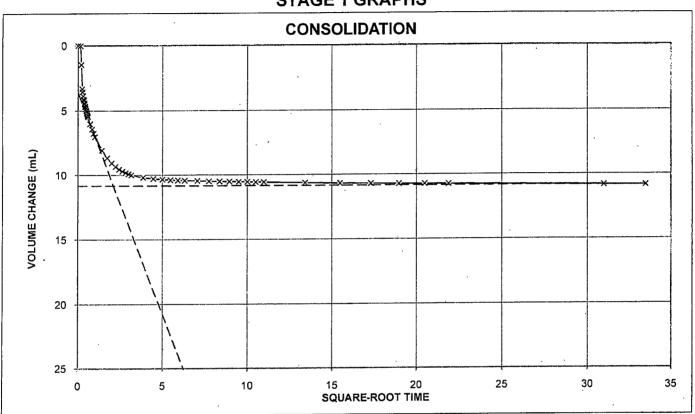
p. +64 9 356 3510 w. www.geotechnics.co.nz Form No.: TG1-1 Form Date: July 2003

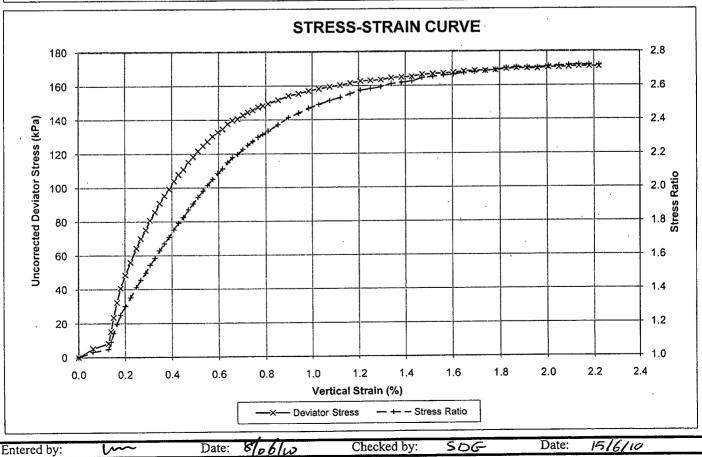
T:\Geotechnics\Projects\615300\815300.001\WorkingMa

Plate No.:

Site:

Huia Watercare Plant, Your Ref No.: 27064.001


Sample No.: SS3


Page of

Job No.: 615300.001

Depth: 8.40 -- 8.55 (m)

STAGE 1 GRAPHS

p. +64 9 356 3510

w. www.geotechnics.co.nz

Form No.: TG1-2 July 2003 Form Date:

T:\Geatechnics\Projects\615300\615300.001\Workin

(m)

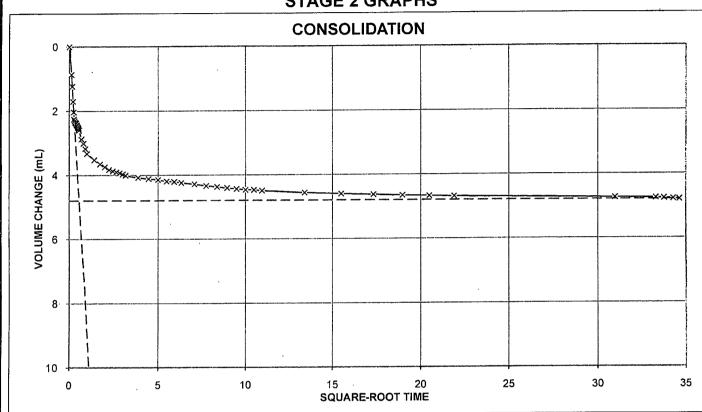
Plate No.:

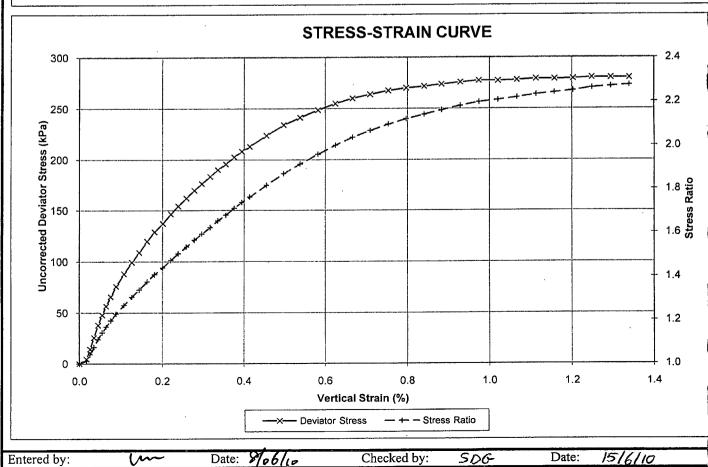
Site:

Huia Watercare Plant, Your Ref No.: 27064.001

Job No.:

Page of 615300.001


Test pit/Bh No.: BH6


Sample No.: SS3

Depth:

8.40 -- 8.55

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510

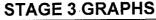
w. www.geotechnics.co.nz

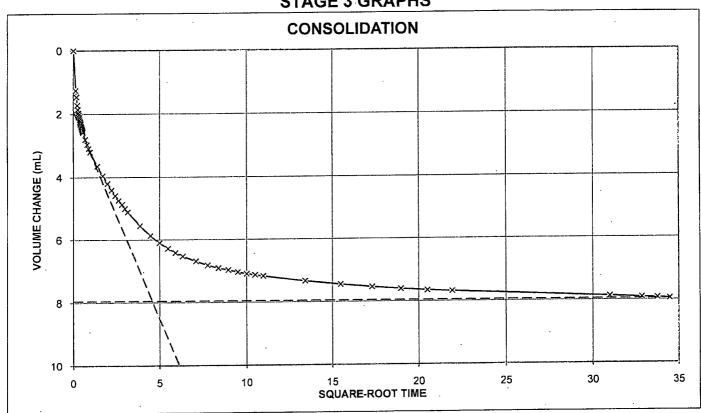
Form No.: TG1-3 Form Date: July 2003

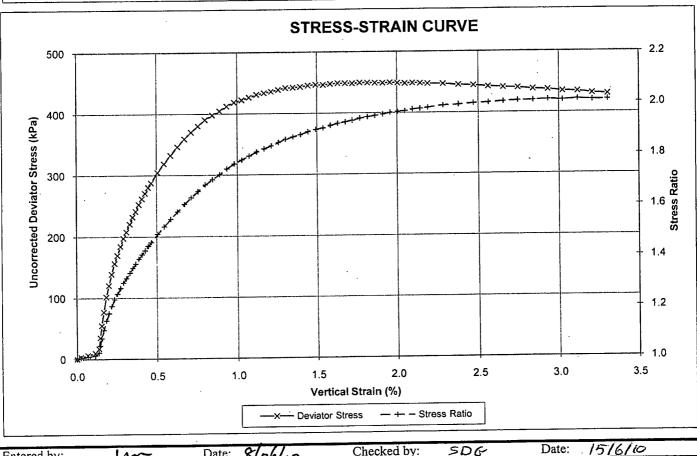
T:\Geotechnics\Projects\615300\815300.001\WorkingMa

Plate No.:

Site:


Huia Watercare Plant, Your Ref No.: 27064.001


Sample No.: SS3


Page of

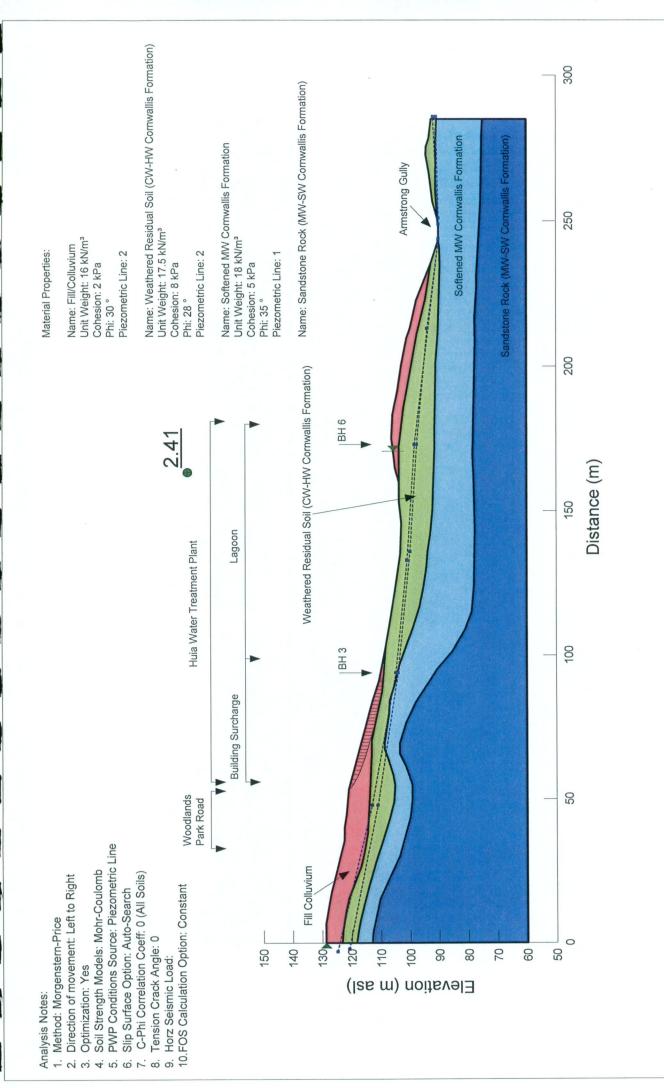
Job No.: 615300.001

8.40 -- 8.55 (m) Depth:

Checked by:

8/06/10

Date:

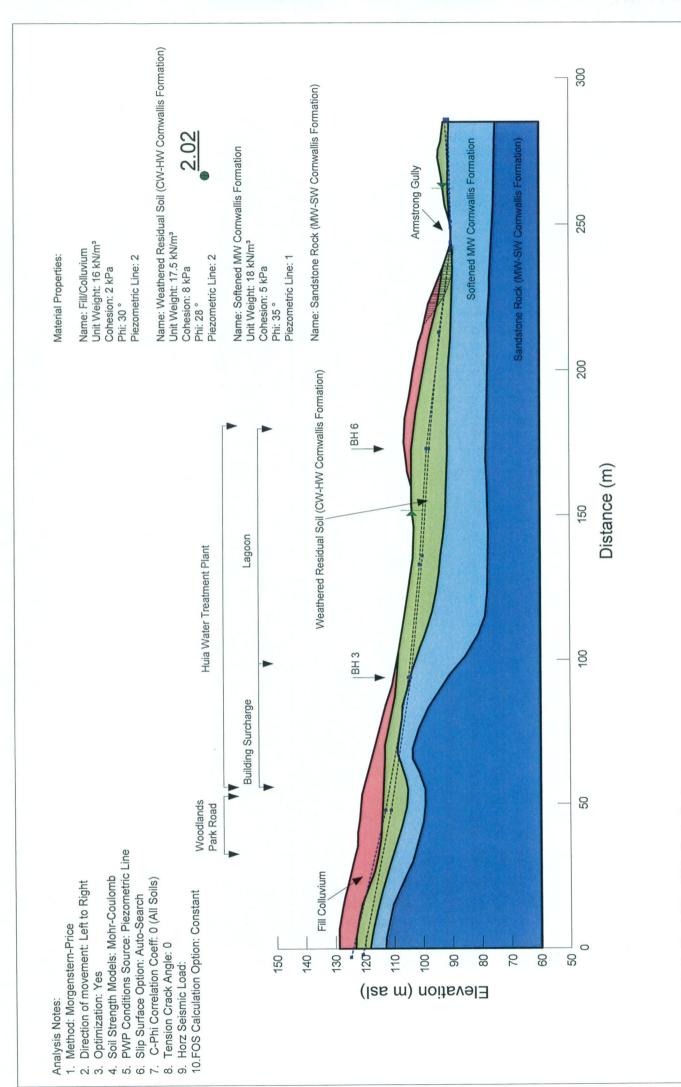

un

Entered by:

SDG

Appendix E:

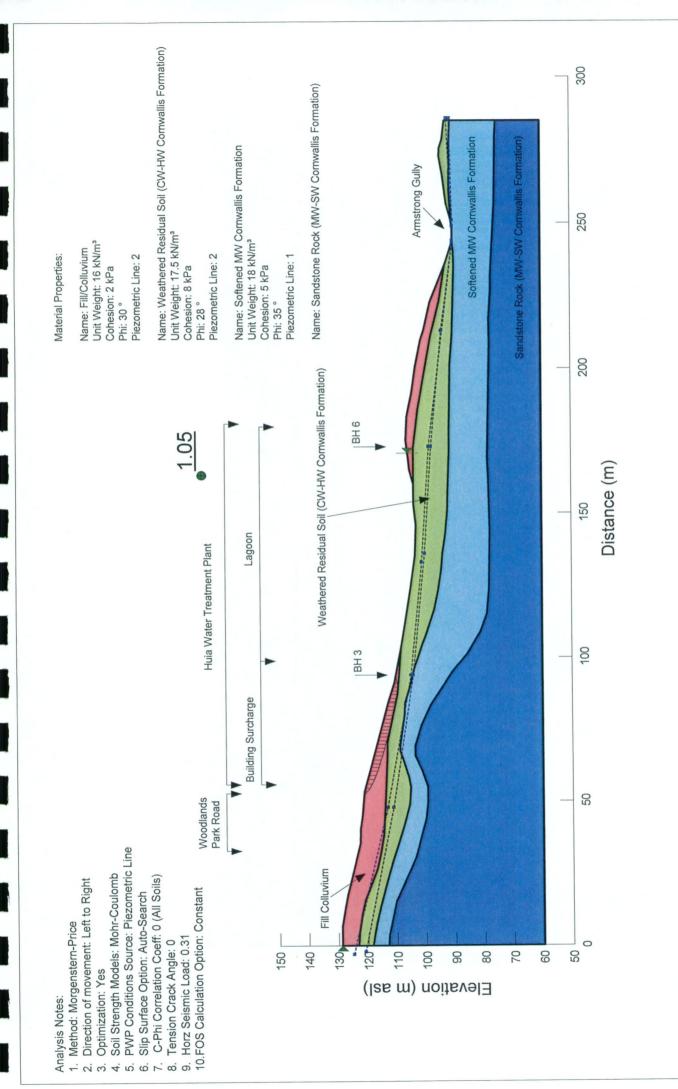
SlopeW Stability Analyses


P:\27064\27064.001\WorkingMateria\Slope\W\\Section 3 - No shear seam.gsz

Scale: 1:1,250 Analysed by: STMM Checked by:

Date: 25/05/2010

Huia Water Treatment Plant Rebuild Geotechnical Investigation 1. Current Conditions Upper Slope

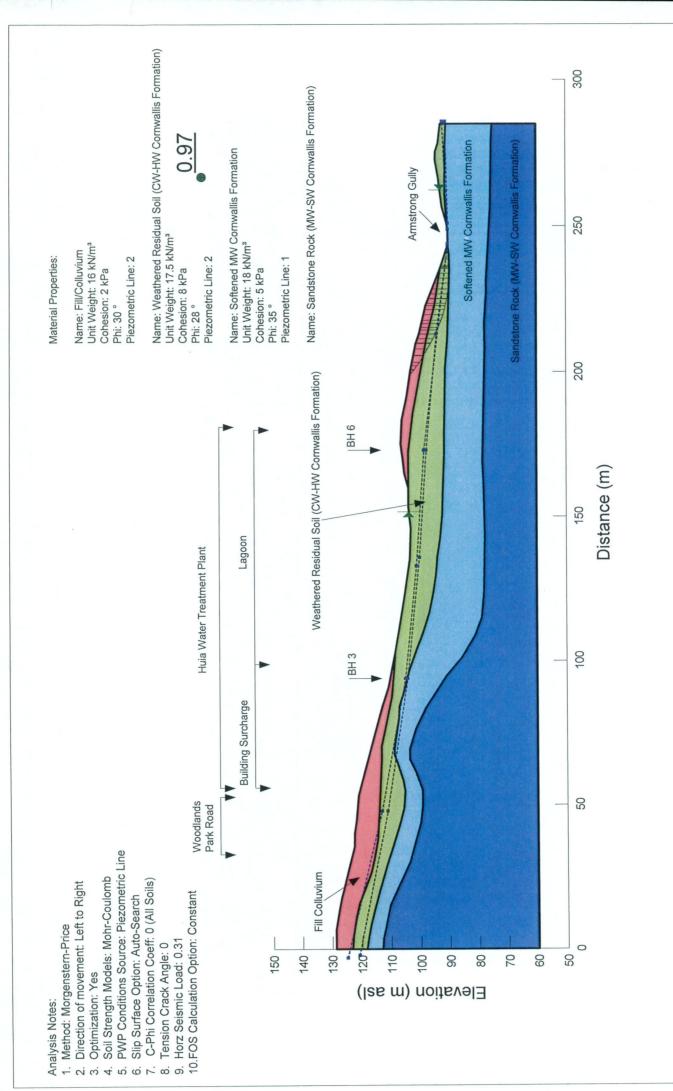


P:\text{27064\text{27064\text{001\text{\tinx}\text{\tinx}\tint{\texitinx}\xint{\text{\text{\text{\text{\text{\text{\text{\text{\texitinx}\xint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx}\text{\texi}\tinx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx}\tinx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tinx{\text{\text{\tinx}\text{\tex{\text{\text{\text{\text{\text{\texi}\tint{\text{\texi}\tint{\text{\texi}\tint{\text{\texi}\tint{\text{\texi}\tinint{\text{\tiint

Sc. Sc. Andr. Andr. Da.

Scale: 1:1,250
Analysed by: STMM
Checked by:
Date: 25/05/2010

Huia Water Treatment Plant Rebuild Geotechnical Investigation 2. Current Conditions Lower Slope



P:\27064\27064.001\WorkingMateria\\Slope\W\\Section 3 - No shear seam.gsz

Scale: 1:1,250
Analysed by: STMM Checked by: 3.

Huia Water Treatment Plant Rebuild Geotechnical Investigation 3. Current Conditions Upper Slope Seismic

P:\27064\27064.001\WorkingMaterial\SlopeW\\Section 3 - No shear seam.gsz

Scale: 1:1,250
Analysed by: STMM
Checked by:
Date: 25/05/Z010

MM Huia Water Treatment Plant Rebuild Geotechnical Investigation

4. Current Conditions Lower Slope Seismic